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Objectives

§ Use	OpenCV to	track	a	textured	rigid	object	in	3D	in	real	time

§ Superimpose	graphics	atop	the	object	– augmented	reality!

§ Use	various	wavelengths	of	visible	or	invisible	light
§ Make	the	solution	more	robust
§ Make	the	solution	more	“magical”

§ Building	on	today’s	talk,	tomorrow’s	workshop	goes	deeper	into	implementation
§ Gauge	community	interest	in	a	new	open-source	library



Weird	things	about	
OpenCV



Weirdness	in	image	space

§ Input/output	functions	demand	colour conversion	to	BGR…
§ …which	is	rarely	a	native	format

§ Hue	(in	HSV	or	HLS)	only	uses	range	of	[0,179]	in	uchar

§ Points	are	in	(x,y)	order	and	rectangles	are	in	(x,y,w,h)	order…
§ …but	matrix	indices	are	in	(y,x)	order

§ “Left”	and	“right”	are	from	viewer’s	perspective
§ haarcascade_lefteye_2splits.xml	detects	subject’s	right eye
§ haarcascade_righteye_2splits.xml	detects	subject’s	left eye



Weirdness	with	mirrors

Definitions	based	on	viewer’s	left	and	right	are	unstable	with	respect	to	mirrors



Weirdness	in	3D	space

Directions	in	local	space
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Directions	in	view	space,	frontal	view
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§ Relative	to	OpenGL,	OpenCV flips	all	three axis	directions!
§ Some	of	OpenCV’s official	samples	re-flip	Z	before	drawing	axes	but	leave	X	and	Y	unchanged



Tracking	a	textured	rigid	
object	in	3D	in	real	time
Demo	source	code	is	online	at	
https://github.com/JoeHowse/VisualizingTheInvisible



Processing	a	reference	image

Load	image

Resize
• Bicubic

Convert	to	
grayscale
• Intensity:	
simple	average	
of	R,	G,	B

Detect	
keypoints &	
compute	
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• ORB
• Balanced	by	
region

Draw	
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of	keypoints

Save	
visualization

Map	
keypoints &	
vertices	to	
3D	reference	
model
• Plane
• Cuboid
• Cylinder



Title: Panama	City	Fish	Market Photographer: Joseph	Howse January	13,	2018





Estimating	the	camera	matrix

The	ideal	camera matrix

f 0 cx =	w/2

0 f cy =	h/2

0 0 1

§ f,	cx,	cy must	be	in	same	units,	e.g.	pixels
§ f	is	focal	length
§ (cx,	cy)	is	center	or	“principal	point”	of	image	within	

image	plane
§ (w,	h)	are	width,	height	of	image	plane
§ α is	diagonal	field	of	view	(FOV)
§ (𝜃, 𝜙)	are	horizontal,	vertical	field	of	view	(FOV)
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Processing	a	scene
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When	does	tracking	deteriorate?

§ Lighting	is	dim
§ Image	is	noisy

§ Lighting	is	harsh
§ Shadows
§ Specular	highlights

§ Object	is	occluded

§ Object	is	angled	away	from	camera

§ Object	is	distant	or	small

§ Object	is	curved
§ Cylindrical	tracking	is	
“experimental”	in	current	
implementation

§ Lens	is	out	of	focus

§ Lens	distorts

§ Matches	are	nearly	collinear
§ Pose	estimate	spins,	as	one	axis	of	
rotation	is	indeterminate



Other	algorithms	not	covered	in	this	demo

§ Alternatives	to	intensity	grayscale	conversion
§ Gamma-corrected	conversions	may	produce	more	inliers	but	are	slower

§ Samuel	Macêdo,	Givânio Melo,	and	Judith	Kelner. “A	comparative	study	of	grayscale	conversion	techniques	applied	
to	SIFT	descriptors”.	SBC	Journal	on	Interactive	Systems,	vol.	6,	no.	2,	2015

§ Equalization,	adaptive	grayscale	conversion,	CLAHE	– better	or	worse	for	producing	inliers?

§ Alternatives	to	ORB
§ SIFT,	SURF,	KAZE,	AKAZE	may	produce	more	inliers	but	are	slower

§ Zoltan	Pusztai and	Levente Hajder,	“Quantitative	Comparison	of	Feature	Matchers	Implemented	in	OpenCV3”.	21st	
Computer	Vision	Winter	Workshop,	Rimske Toplice,	Slovenia,	February	3-5,	2016

§ Multiple	reference	images

§ Fallback	to	optical	flow	+	homography
§ Saves	cost	by	avoiding	redetection	of	keypoints every	frame

§ Fallback	to	inertial	navigation
§ Rotation	from	accelerometer,	gyroscope,	magnetometer



Experiments	in	
ultraviolet



An	ultraviolet	webcam:	XNiteUSB2S-MUV	(US$135)

Visible:	The	petals	of	the	black-eyed	
Susan	are	solid	yellow

Ultraviolet:	The	petals	of	the	black-eyed	
Susan	are	dark	near	the	centre

§ Lens	filter	(shown	above)	blocks	nearly	all	visible	light	but	allows	UV	to	pass
§ Sold	by	MaxMax.com:	https://maxmax.com/maincamerapage/uvcameras/usb2-small



Subjective	evaluation	of	XNiteUSB2S-MUV

§ 3D	tracking	is	feasible	under	some	conditions…
§ …even with	textures	designed	for	visible	spectrum

§ Requires	bright	sunlight	or	bright	artificial	UV	light
§ At	ground	level,	sunlight	is	53%	IR,	44%	visible,	only	3%	UV
§ Normal	indoor	lights	emit	too	little	UV	to	form	images

§ Low	fidelity
§ Low	contrast,	haze
§ Noise
§ Barrel	distortion

§ More	experiments	needed
§ UV	pigments	and	application	techniques
§ Quartz	lens	– expensive	but	transmits	UV	much	better



Let’s	look	at	natural	UV	light,	outdoors	at	1	p.m.	on	a	sunny	day…







A	commonplace	UV	pigment

Visible:	Blobs	of	sunscreen	are	white Ultraviolet:	Blobs	of	sunscreen	are	dark



A	commonplace	UV	pigment

Visible:	Rubbed-in	sunscreen	is	transparent Ultraviolet:	Rubbed-in	sunscreen	is	dark



Let’s	look	at	light	from	an	XNiteFlashF 365nm	UV	flashlight	(US$115),	indoors…









UV	to	red	fluorescent	ink	(US$10	for	a	pen)

Without	UV	flashlight:	Text	is	invisible	on	
photo	paper,	nearly	invisible	on	matboard With	UV	flashlight:	Text	is	visible	in	red



UV	to	red	fluorescent	ink (US$10	for	a	pen)

Outdoor	sunlight	without	UV	flashlight:	
Text	is	nearly	invisible

Outdoor	sunlight	with	narrowly	focused	
UV	flashlight:	Text	is	faintly	visible	in	red



Let’s	track	a	UV-to-red	fluorescent	drawing	on	blank	photo	paper…



Title:
Algorithmic	
Squiggle	Reality

Artist:
Janet	Howse

August	24,	2018













Experiments	in	
monochrome



A	monochrome	industrial	camera:	Grasshopper3	GS3-U3-
23S6M-C	(US$995)

Library,	shot	with	12.5mm	lens	(US$41)
Eyeball,	shot	with	20mm	lens	(US$35)	

and	10mm	extension	tube	(US$10)

§ 1920x1200	resolution,	163	FPS,	1/1.2”	sensor	format,	C-mount	interchangeable	lenses	
§ Works	well	with	cheap,	classic	lenses	from	16mm	“cine”	systems

§ Sold	by	FLIR	/	Point	Grey:	https://www.ptgrey.com/grasshopper3-23-mp-mono-usb3-vision-sony-pregius-
imx174-camera



Subjective	evaluation	of	Grasshopper3	GS3-U3-23S6M-C

§ 3D	tracking	works	well,	feels	fluid
§ ~40	FPS,	compared	to	~25	FPS	with	built-in	webcam	(MacBook	Pro,	Late	2013)
§ As	distance	increases,	captures	more	inliers	than	built-in	webcam

§ Requires	good	manual	focusing

§ High	fidelity
§ Detailed	when	in	focus
§ Good	contrast
§ Low	noise,	even	in	dim	light



















Future	Work



My	Wish	List

§ Improve	cylindrical	tracking
§ Apply	distortion	to	reference	image	before	detecting	keypoints?

§ Use	multiple	reference	images	for	different	viewpoints

§ Optimize	grayscale	contrast* (tonality)	to	produce	more	inliers

§ Increase	frame	rate* to	make	Kalman filter	run	more	smoothly

§ Create	“invisible”	textures	that	only	UV	or	IR	camera	can	see

§ Port	to	other	platforms,	including	mobiles
§ Integrate	visual	tracking	&	rendering	with	other	kinds	of	sensing

*	Contrast	and	frame	rate	are	affected	by	lighting,	materials,	lens,	camera,	processing



Your	Wish	List?

§ Come	to	tomorrow’s	workshop	to	learn	and	give	your	input

§ What	features	and	architecture	would	you	like	to	see	in	an	open-source	library?

§ What	chapters	would	you	like	to	see	in	a	book?


