
Visualizing	the	Invisible
PyImageConf:	August	27,	2018
Joseph	Howse,	Nummist Media,	http://nummist.com

Objectives

§ Use	OpenCV to	track	a	textured	rigid	object	in	3D	in	real	time

§ Superimpose	graphics	atop	the	object	– augmented	reality!

§ Use	various	wavelengths	of	visible	or	invisible	light
§ Make	the	solution	more	robust
§ Make	the	solution	more	“magical”

§ Building	on	today’s	talk,	tomorrow’s	workshop	goes	deeper	into	implementation
§ Gauge	community	interest	in	a	new	open-source	library

Weird	things	about	
OpenCV

Weirdness	in	image	space

§ Input/output	functions	demand	colour conversion	to	BGR…
§ …which	is	rarely	a	native	format

§ Hue	(in	HSV	or	HLS)	only	uses	range	of	[0,179]	in	uchar

§ Points	are	in	(x,y)	order	and	rectangles	are	in	(x,y,w,h)	order…
§ …but	matrix	indices	are	in	(y,x)	order

§ “Left”	and	“right”	are	from	viewer’s	perspective
§ haarcascade_lefteye_2splits.xml	detects	subject’s	right eye
§ haarcascade_righteye_2splits.xml	detects	subject’s	left eye

Weirdness	with	mirrors

Definitions	based	on	viewer’s	left	and	right	are	unstable	with	respect	to	mirrors

Weirdness	in	3D	space

Directions	in	local	space

Object’s	
+X

Object’s	
+Y

Object’s	
+Z

Right-handed,	
OpenGL

Object’s	
right

Object’s	
up

Object’s	
forward

Left-handed,
DirectX

Object’s	
right

Object’s	
up

Object’s	
back

OpenCV Object’s	
left

Object’s	
down

Object’s	
back

OpenCV samples	
with	re-flipped	Z

Object’s	
left

Object’s	
down

Object’s	
forward

Directions	in	view	space,	frontal	view

Object’s	
+X

Object’s	
+Y

Object’s	
+Z

Right-handed,	
OpenGL

Viewer’s	
left

Viewer’s	
up

Viewer’s	
back

Left-handed,	
DirectX

Viewer’s	
left

Viewer’s	
up

Viewer’s	
forward

OpenCV Viewer’s	
right

Viewer’s	
down

Viewer’s	
forward

OpenCV samples	
with	re-flipped	Z

Viewer’s	
right

Viewer’s	
down

Viewer’s	
back

§ Relative	to	OpenGL,	OpenCV flips	all	three axis	directions!
§ Some	of	OpenCV’s official	samples	re-flip	Z	before	drawing	axes	but	leave	X	and	Y	unchanged

Tracking	a	textured	rigid	
object	in	3D	in	real	time
Demo	source	code	is	online	at	
https://github.com/JoeHowse/VisualizingTheInvisible

Processing	a	reference	image

Load	image

Resize
• Bicubic

Convert	to	
grayscale
• Intensity:	
simple	average	
of	R,	G,	B

Detect	
keypoints &	
compute	
descriptors
• ORB
• Balanced	by	
region

Draw	
visualization	
of	keypoints

Save	
visualization

Map	
keypoints &	
vertices	to	
3D	reference	
model
• Plane
• Cuboid
• Cylinder

Title: Panama	City	Fish	Market Photographer: Joseph	Howse January	13,	2018

Estimating	the	camera	matrix

The	ideal	camera matrix

f 0 cx =	w/2

0 f cy =	h/2

0 0 1

§ f,	cx,	cy must	be	in	same	units,	e.g.	pixels
§ f	is	focal	length
§ (cx,	cy)	is	center	or	“principal	point”	of	image	within	

image	plane
§ (w,	h)	are	width,	height	of	image	plane
§ α is	diagonal	field	of	view	(FOV)
§ (𝜃, 𝜙)	are	horizontal,	vertical	field	of	view	(FOV)

§ 𝑓 = %&'(&�

*(,-.α&)
= %&'(&�

* ,-.0&
&
' ,-.1&

&�

Processing	a	scene

Capture	
image

Convert	to	
grayscale
•Equal	weights	
for	R,	G,	B

Detect	
keypoints &	
compute	
descriptors
•ORB
•Object	mask	
based	on	
previous	
solution	for	pose

Match	scene	
keypoints to	
reference	
keypoints
•FLANN

Filter	
matches
•Distance	ratio	
test

Solve	for	
pose
•solvePnPRansac

Reduce	jitter
•Kalman filter

Draw	object	
mask	&	
visualization	
of	matches,	
pose,	mask
•Project	points

Show	
visualization

When	does	tracking	deteriorate?

§ Lighting	is	dim
§ Image	is	noisy

§ Lighting	is	harsh
§ Shadows
§ Specular	highlights

§ Object	is	occluded

§ Object	is	angled	away	from	camera

§ Object	is	distant	or	small

§ Object	is	curved
§ Cylindrical	tracking	is	
“experimental”	in	current	
implementation

§ Lens	is	out	of	focus

§ Lens	distorts

§ Matches	are	nearly	collinear
§ Pose	estimate	spins,	as	one	axis	of	
rotation	is	indeterminate

Other	algorithms	not	covered	in	this	demo

§ Alternatives	to	intensity	grayscale	conversion
§ Gamma-corrected	conversions	may	produce	more	inliers	but	are	slower

§ Samuel	Macêdo,	Givânio Melo,	and	Judith	Kelner. “A	comparative	study	of	grayscale	conversion	techniques	applied	
to	SIFT	descriptors”.	SBC	Journal	on	Interactive	Systems,	vol.	6,	no.	2,	2015

§ Equalization,	adaptive	grayscale	conversion,	CLAHE	– better	or	worse	for	producing	inliers?

§ Alternatives	to	ORB
§ SIFT,	SURF,	KAZE,	AKAZE	may	produce	more	inliers	but	are	slower

§ Zoltan	Pusztai and	Levente Hajder,	“Quantitative	Comparison	of	Feature	Matchers	Implemented	in	OpenCV3”.	21st	
Computer	Vision	Winter	Workshop,	Rimske Toplice,	Slovenia,	February	3-5,	2016

§ Multiple	reference	images

§ Fallback	to	optical	flow	+	homography
§ Saves	cost	by	avoiding	redetection	of	keypoints every	frame

§ Fallback	to	inertial	navigation
§ Rotation	from	accelerometer,	gyroscope,	magnetometer

Experiments	in	
ultraviolet

An	ultraviolet	webcam:	XNiteUSB2S-MUV	(US$135)

Visible:	The	petals	of	the	black-eyed	
Susan	are	solid	yellow

Ultraviolet:	The	petals	of	the	black-eyed	
Susan	are	dark	near	the	centre

§ Lens	filter	(shown	above)	blocks	nearly	all	visible	light	but	allows	UV	to	pass
§ Sold	by	MaxMax.com:	https://maxmax.com/maincamerapage/uvcameras/usb2-small

Subjective	evaluation	of	XNiteUSB2S-MUV

§ 3D	tracking	is	feasible	under	some	conditions…
§ …even with	textures	designed	for	visible	spectrum

§ Requires	bright	sunlight	or	bright	artificial	UV	light
§ At	ground	level,	sunlight	is	53%	IR,	44%	visible,	only	3%	UV
§ Normal	indoor	lights	emit	too	little	UV	to	form	images

§ Low	fidelity
§ Low	contrast,	haze
§ Noise
§ Barrel	distortion

§ More	experiments	needed
§ UV	pigments	and	application	techniques
§ Quartz	lens	– expensive	but	transmits	UV	much	better

Let’s	look	at	natural	UV	light,	outdoors	at	1	p.m.	on	a	sunny	day…

A	commonplace	UV	pigment

Visible:	Blobs	of	sunscreen	are	white Ultraviolet:	Blobs	of	sunscreen	are	dark

A	commonplace	UV	pigment

Visible:	Rubbed-in	sunscreen	is	transparent Ultraviolet:	Rubbed-in	sunscreen	is	dark

Let’s	look	at	light	from	an	XNiteFlashF 365nm	UV	flashlight	(US$115),	indoors…

UV	to	red	fluorescent	ink	(US$10	for	a	pen)

Without	UV	flashlight:	Text	is	invisible	on	
photo	paper,	nearly	invisible	on	matboard With	UV	flashlight:	Text	is	visible	in	red

UV	to	red	fluorescent	ink (US$10	for	a	pen)

Outdoor	sunlight	without	UV	flashlight:	
Text	is	nearly	invisible

Outdoor	sunlight	with	narrowly	focused	
UV	flashlight:	Text	is	faintly	visible	in	red

Let’s	track	a	UV-to-red	fluorescent	drawing	on	blank	photo	paper…

Title:
Algorithmic	
Squiggle	Reality

Artist:
Janet	Howse

August	24,	2018

Experiments	in	
monochrome

A	monochrome	industrial	camera:	Grasshopper3	GS3-U3-
23S6M-C	(US$995)

Library,	shot	with	12.5mm	lens	(US$41)
Eyeball,	shot	with	20mm	lens	(US$35)	

and	10mm	extension	tube	(US$10)

§ 1920x1200	resolution,	163	FPS,	1/1.2”	sensor	format,	C-mount	interchangeable	lenses	
§ Works	well	with	cheap,	classic	lenses	from	16mm	“cine”	systems

§ Sold	by	FLIR	/	Point	Grey:	https://www.ptgrey.com/grasshopper3-23-mp-mono-usb3-vision-sony-pregius-
imx174-camera

Subjective	evaluation	of	Grasshopper3	GS3-U3-23S6M-C

§ 3D	tracking	works	well,	feels	fluid
§ ~40	FPS,	compared	to	~25	FPS	with	built-in	webcam	(MacBook	Pro,	Late	2013)
§ As	distance	increases,	captures	more	inliers	than	built-in	webcam

§ Requires	good	manual	focusing

§ High	fidelity
§ Detailed	when	in	focus
§ Good	contrast
§ Low	noise,	even	in	dim	light

Future	Work

My	Wish	List

§ Improve	cylindrical	tracking
§ Apply	distortion	to	reference	image	before	detecting	keypoints?

§ Use	multiple	reference	images	for	different	viewpoints

§ Optimize	grayscale	contrast* (tonality)	to	produce	more	inliers

§ Increase	frame	rate* to	make	Kalman filter	run	more	smoothly

§ Create	“invisible”	textures	that	only	UV	or	IR	camera	can	see

§ Port	to	other	platforms,	including	mobiles
§ Integrate	visual	tracking	&	rendering	with	other	kinds	of	sensing

*	Contrast	and	frame	rate	are	affected	by	lighting,	materials,	lens,	camera,	processing

Your	Wish	List?

§ Come	to	tomorrow’s	workshop	to	learn	and	give	your	input

§ What	features	and	architecture	would	you	like	to	see	in	an	open-source	library?

§ What	chapters	would	you	like	to	see	in	a	book?

