
NummSquared: a New Foundation for Formal Methods December 15, 2006 / 1 of 15

NummSquared: a New Foundation for Formal Methods

Samuel Howse
Poohbist Technology
607 Francklyn Street

Halifax, Nova Scotia B3H 3B6
Canada

Phone: 1-902-422-0845
Email: samuelhowse@poohbist.com

Web page: http://poohbist.com/

December 15, 2006

Abstract

To spread the use of formal methods, a language must appeal to programmers, mathematicians and logicians.
Set theory is the standard mathematical foundation, but often ignores computational aspects. Type theory has
good support for mixing specification and implementation, but often imposes type constraints in excess of those
found in typical programming languages. Furthermore, standard mathematics is untyped. Languages based on
the untyped lambda calculus often permit non-terminating programs and require reasoning in non-classical
logics. Languages without higher order functions often lack polymorphism. There is a wide gap between con-
ventional programming languages and logic. This paper proposes NummSquared, a new formal language based
only on untyped higher order functions, which allows only terminating programs, has a classical logic, is related
to well-founded set theory, and supports reflection. NummSquared supports rapid prototyping without proofs to
reduce cost, and supports adding proofs later.

1 Overview and comparison

A feature that is elegant in a programming language may be inappropriate for formal methods, particularly when the
programming language must also serve as a logic. The untyped lambda calculus, a useful model for many program-
ming languages, is elegant because it is based only on untyped functions, and any function may be passed as an ar-
gument to any other function. For example, let f be the function such that f(x) = x(x). But this flexibility is a source of
trouble. For example, f(f) reduces to itself - a non-terminating program. Worse, the untyped lambda calculus aug-
mented by negation is inconsistent. Let R be the function such that R(x) = not(x(x)). Then R(R) = not(R(R)), so R(R)
is neither true nor false. This Russell’s paradox, and other paradoxes in the untyped lambda calculus, are discussed
by Seldin [12].

Both set theory and type theory offer solutions to the paradoxes based on well-foundedness (roughly, objects
are built from existing objects, thus avoiding the circularity of the untyped lambda calculus). Even so, for reasons
given in the abstract, languages based on sets or types have some disadvantages. Another avenue may be of interest:
well-founded languages based on untyped higher order functions. This avenue is much less explored. Von Neumann

Copyright © 2006 Samuel Howse. All rights reserved.



NummSquared: a New Foundation for Formal Methods December 15, 2006 / 2 of 15

[14] and Jones [10] propose such languages, but ignore computational aspects. Grue’s map theory [6] has a well-
founded subset, but also has non-terminating programs and a logic that is partially non-classical. This paper pro-
poses NummSquared, a new formal language. NummSquared pursues this avenue by being entirely well-founded,
and including features for classical logic, mathematics and computation. NummSquared’s well-foundedness im-
plies less flexibility than the untyped lambda calculus, which allows non-terminating programs and paradoxes to be
averted.

All NummSquared programs terminate and avoid paradoxes without the need for the programmer to supply
proofs. Thus proofs may be omitted initially, then added as needed to prove that implementation satisfies specifi-
cation. A benefit is to save the cost of doing proofs during the rapid prototyping phase.

NummSquared is variable-free, as is Backus’s FP [3]. But, for readability, NummSquared concrete syntax is some-
what reminiscent of lambda calculi. NummSquared supports reflection: NummSquared is its own macro language,
and NummSquared programs can manipulate NummSquared proofs. Variable-freeness eases reflection.

NummSquared has no side-effects or global state, which simplifies mathematical reasoning, and improves secu-
rity.

This paper highlights some interesting NummSquared features. For more details on NummSquared, see [9]. The
NummSquared interpreter, NsGo, is a work in progress. NsGo, an F#/C# .NET assembly, is mostly automatically ex-
tracted from a program of the Coq proof assistant. (See [4] and [11].) Using a high quality proof assistant such as Coq
increases the reliability of NsGo.

1.1 Coercion

The challenge in using untyped higher order functions is how to restrict the argument to prevent non-termination
and paradoxes. In set theory, a function is represented by a set of ordered pairs, the domain of a function is a set,
and the domain does not include all sets. However, when the domain is a function space (the higher order case),
membership in the domain is not computable.

NummSquared uses an indirect approach: Since membership in the domain is not computable, rejecting an ar-
gument outside the domain is not possible. Therefore, NummSquared coerces the argument to a member of the
domain. Coercion in NummSquared is somewhat related to type conversion, a feature of many programming lan-
guages, but NummSquared coercion is generalized to higher order functions. Howe [8, section 2.2] restricts un-
typed lambda terms to set domains, which is somewhat related to NummSquared coercion, but Howe includes non-
terminating terms. In contrast to NummSquared coercion, coercion in Observational Type Theory [1, section 2.2] is
not automatic and requires proof.

2 NummSquared semantics

The semantics of NummSquared are described briefly. Many more definitions and theorems, and also proofs, may
be found in [9].

2.1 Small function extensions

The central objects in NummSquared are the small functions. Small function extensions (semantic objects) are di-
vided into rule small function extensions (represented by rules), and simple small function extensions (represented
by simpler means). Simple small function extensions are further divided into leaf small function extensions (which
are atomic), and pair small function extensions (ordered pairs of small function extensions).

A leaf small function extension is null, zero or one. null is analogous to the null pointer in many programming lan-
guages, and represents the absence of relevant information. null does not represent undefined nor non-termination.

Copyright © 2006 Samuel Howse. All rights reserved.



NummSquared: a New Foundation for Formal Methods December 15, 2006 / 3 of 15

zero and one represent false and true, respectively. It is convenient for zero to contain null, and for one to contain null

and zero. (Containment means structural containment. For example, a record contains its fields.)
A pair small function extension p contains left(p) and right(p), which are small function extensions. It is conve-

nient for a pair small function extension p to additionally contain null, zero and one.
A rule small function extension f contains the domain of f (a small set of small function extensions), denoted by

dom(f), and, for each dom(f) element x, the specific result of f at x (a small function extension), denoted by f<x>.
A small set is a set no larger than a ZFC set. (ZFC is Zermelo-Fraenkel set theory with the axiom of choice - see [13,
p.84,132-133].) The requirement that dom(f) be small is essential. Without that requirement, dom(f) could be the set
of all small function extensions, entailing the troubles of the untyped lambda calculus.

For small function extensions x0 and x1, let {x0, x1} be the pair small function extension p such that left(p) = x0

and right(p) = x1.
A small function extension f is a Boolean iff f = zero or f = one. Let Null be the set of null. Let Nuro be the set of null

and zero. Let Leaf be the set of all leaf small function extensions, i.e. null, zero and one.
A small function extension f is a tree iff f contains, directly or indirectly, only simple small function extensions. A

tree small function extension contains no rule small function extensions, and is therefore a particularly simple way
to represent data. Let Tree be the set of all tree small function extensions.

Rule small function extensions obviously deserve to be called functions, and simple small function extensions
can be viewed as functions too, due to the following definitions.

Let dom(null) = Null, dom(zero) = Null, and dom(one) = Nuro. For a pair small function extension p, let dom(p) =
Leaf.

For a leaf small function extension l, and a dom(l) element x, let l<x> = x. For a pair small function extension p,
and a dom(p) element x, let p<x> be as follows:

• null if x = null

• left(p) if x = zero

• right(p) if x = one

For a small function extension f, the range of f, denoted by ran(f), is the set of all f<x> such that x is a dom(f) ele-
ment. For a small function extension f, the field of f, denoted by �eld(f), is the union of dom(f) and ran(f).

For a small function extension f 6= null, and a �eld(f) element x, x is structurally smaller than f. Thus f 6= null is
built after the elements of its field. In this way, NummSquared is well-founded. Jones’s Pure Functions [10] are well-
founded in a similar way. The well-foundedness of NummSquared enables recursion and induction on small func-
tion extensions.

null is built from nothing at all. However, null is an element of its own field. When doing recursion and induction,
it is therefore necessary to separately handle null as a base case.

For a small function extension f, and a dom(f) element x, the specific result of f at x, denoted by f<x>, has been
defined. The challenge is to generalize the definition of result to include all small function extensions f and x satisfy-
ing a certain constraint which does not involve dom(f). This challenge is addressed by using NummSquared coercion
to coerce x into a dom(f) element.

2.2 Domain extensions

To coerce x into a dom(f) element, it is not sufficient that dom(f) is a small set of small function extensions - a con-
straint on dom(f) is required. The required constraint is type information, as in type theory. However, the purpose of
the type information differs: the type information is used for runtime coercion, not for type checking (compile-time

Copyright © 2006 Samuel Howse. All rights reserved.



NummSquared: a New Foundation for Formal Methods December 15, 2006 / 4 of 15

or runtime). Therefore, the NummSquared programmer is not constrained by type constraints designed to make
type checking computable. The type information about dom(f) is a NummSquared domain extension.

Domain extensions are divided into constant domain extensions (analogous to primitive data types) and com-
bination domain extensions (analogous to defined data types). Combination domain extensions are further divided
into dependent sum domain extensions, and dependent product domain extensions (analogous to the correspond-
ing types in type theory - see Coq [4, sections 3.1.4, 4.1.3, 4.2]).

A constant domain extension is Dom.Null, Dom.Nuro, Dom.Leaf or Dom.Tree.
A dependent sum domain extension A contains domExtFam(A) (a domain extension family). A dependent prod-

uct domain extension A contains domExtFam(A) (a domain extension family).
A domain extension family F contains the following:

• the domain of F (a small set of small function extensions), denoted by dom(F)

• for each dom(F) element x, the specific result of F at x (a domain extension), denoted by F<x>
• the domain extension of F (a domain extension), denoted by domExt(F)

A domain extension represents a domain. Let dom(Dom.Null) = Null, dom(Dom.Nuro) = Nuro, dom(Dom.Leaf) =
Leaf, and dom(Dom.Tree) = Tree.

For a dependent sum domain extension A, let dom(A) be the set of null and all pair small function extensions p
such that left(p) is a dom(domExtFam(A)) element, and right(p) is a dom(domExtFam(A)<left(p)>) element.

For a dependent product domain extension A, let dom(A) be the set of null and all rule small function extensions f
such that dom(f) = dom(domExtFam(A)) and, for each dom(f) element x, f<x> is a dom(domExtFam(A)<x>) element.

A domain extension f or domain extension family F is valid iff, for each domain extension family G contained,
directly or indirectly, in f or F, and for G = F, dom(domExt(G)) = dom(G).

The domain extension irrelevance theorem proves that a domain extension contains no more information than
the domain it represents: for valid domain extensions A and B, if dom(A) = dom(B), then A = B. However, domain
extensions still serve as a constraint on domains, and are computationally useful for coercion.

2.3 Tagged small function extensions

A rule tagged small function extension is a rule small function extension constrained by a domain extension, as de-
fined below. Tagging is somewhat analogous to adding runtime type information.

Tagged small function extensions are divided into simple tagged small function extensions, and rule tagged small
function extensions. Simple tagged small function extensions are further divided into leaf small function extensions,
and pair tagged small function extensions.

A pair tagged small function extension p contains left(p) and right(p), which are tagged small function extensions.
It is convenient for a pair tagged small function extension p to additionally contain null, zero and one.

A rule tagged small function extension f contains the following:

• the domain of f (a small set of small function extensions), denoted by dom(f)

• for each dom(f) element x, the specific result of f at x (a tagged small function extension), denoted by f<x>
• the domain extension of f (a valid domain extension), denoted by domExt(f), such that dom(domExt(f)) =
dom(f)

For tagged small function extensions x0 and x1, let {x0, x1} be the pair tagged small function extension p such
that left(p) = x0 and right(p) = x1.

Copyright © 2006 Samuel Howse. All rights reserved.



NummSquared: a New Foundation for Formal Methods December 15, 2006 / 5 of 15

For a tagged small function extension f, let untag(f) be the small function extension obtained from f by removing
all domain extensions contained, directly or indirectly, in f.

The tag irrelevance theorem: for tagged small function extensions f and g, if untag(f) = untag(g), then f = g.
A tagged small function extension f is a tree iff untag(f) is a tree.
For a valid domain extension A, and a dom(A) element f, let tagged(A, f) be the tagged small function exten-

sion such that untag(tagged(A, f)) = f. The existence of such a tagged small function extension is proved in [9]. The
fact that f is a dom(A) element enables certain type information be inferred about f, which is sufficient to define the
tagged small function extension.

For a valid domain extension family F, and a dom(F) element x, let tagged(F, x) = tagged(domExt(F), x).
For a simple tagged small function extension f, let dom(f) = dom(untag(f)).
Let domExt(null) = Dom.Null, domExt(zero) = Dom.Null, and domExt(one) = Dom.Nuro. For a pair small function

extension p, let domExt(p) = Dom.Leaf.
For a tagged small function extension f, dom(domExt(f)) = dom(f).
For a tagged small function extension f, and a dom(f) element x, let tagged(f, x) = tagged(domExt(f), x).
For a pair tagged small function extension p, and a dom(p) element x, let p<x> be as follows:

• null if x = null

• left(p) if x = zero

• right(p) if x = one

2.4 Coercion

Tagged small function extensions are sufficiently constrained to enable coercion. For a valid domain extension A,
and a tagged small function extension f, the coercion to A of f (a dom(A) element), denoted by coer(A, f), is as fol-
lows:

• If A is a constant domain extension: coer(A, f) is untag(f) if untag(f) is a dom(A) program; and null otherwise.

• If A is a dependent sum domain extension, and f is a pair tagged small function extension: coer(A, f) is
the pair small function extension p such that left(p) = coer(domExt(domExtFam(A)), left(f)) and right(p) =
coer(domExtFam(A)<left(p)>, right(f)). Note that left(f) is coerced first, then right(f) is coerced.

• If A is a dependent sum domain extension, and f is not a pair tagged small function extension: coer(A, f) = null.

• If A is a dependent product domain extension, and f is a rule tagged small function extension: coer(A, f) is
the rule small function extension r such that dom(r) = dom(domExtFam(A)) and, for each dom(r) program x,
r<x> = coer(domExtFam(A)<x>, f<coer(domExt(f), tagged(domExtFam(A), x))>). Note the pre-coercion be-
fore the call to f, and the post-coercion after the call to f. Pre-coercion and post-coercion adjust the domain
and codomain of f, respectively.

• If A is a dependent product domain extension, and f is not a rule tagged small function extension: coer(A, f) =
null.

The well-founded relation used to define coercion recursively is demonstrated in [9].
For a valid domain extension family F, and a tagged small function extension x, let coer(F, x) = coer(domExt(F),

x).
For tagged small function extensions f and x, let coer(f, x) = coer(domExt(f), x).

Copyright © 2006 Samuel Howse. All rights reserved.



NummSquared: a New Foundation for Formal Methods December 15, 2006 / 6 of 15

For tagged small function extensions f and x, coer(f, x) is a dom(f) element.
The coercion stability theorem proves that coercion does not make unnecessary changes: For a valid domain

extension A, and a tagged small function extension f, if untag(f) is a dom(A) program, then coer(A, f) = untag(f).

2.5 Result

Coercion is now used to address the challenge of generalizing the definition of result. For tagged small function ex-
tensions f and x, the result of f at x, denoted by f(x), is f<coer(f, x)>.

2.6 Identity tagged small function extensions

For a valid domain extension A, the identity tagged small function extension on A, denoted by i(A), is the rule tagged
small function extension f such that domExt(f) = A and, for each dom(f) program x, f<x> = tagged(f, x).

Let Null.set = i(Dom.Null), Nuro.set = i(Dom.Nuro), Leaf.set = i(Dom.Leaf), and Tree.set = i(Dom.Tree).
For a tagged small function extension f, the domain tagged small function extension of f, denoted by dom-

FuncExt(f), is i(domExt(f)).
For a valid domain extension family F, let sumDep(F) = i(A) where A is the dependent sum domain extension

containing F. For a valid domain extension family F, let prodDep(F) = i(A) where A is the dependent product domain
extension containing F.

In NummSquared, domain extensions may be created from tagged small function extensions. For a tagged small
function extension f, the domain extension family of f, denoted by domExtFam(f), is the valid domain extension
family F such that domExt(F) = domExt(f) and, for each dom(F) program x, F<x> = domExt(f(tagged(F, x))).

For a tagged small function extension f, the dependent sum of f, denoted by sumDep(f), is
sumDep(domExtFam(f)). For a tagged small function extension f, the dependent product of f, denoted by prod-

Dep(f), is prodDep(domExtFam(f)).

2.7 Large function extensions and truth

Tagged small function extensions permit abstraction over those small sets of small function extensions that can be
represented by domain extensions. However, for greater generality, it is often necessary to abstract over all tagged
small function extensions - large function extensions provide this generality. Of course, a large function extension
is not a small function extension - if it were, the troubles of the untyped lambda calculus would recur. Somewhat
similar to NummSquared large functions, von Neumann [14] has functions that cannot be used as an argument or
result.

A large function extension f contains, for each tagged small function extension x, the result of f at x (a tagged
small function extension), denoted by f(x).

The result of a tagged small function extension f, denoted by res(f), is f(null). The choice of null is arbitrary - some
argument must be supplied in order to start computation.

A tagged small function extension x is true iff x = one. A large function extension f is true iff, for each tagged small
function extension x, f(x) is true. Thus a large function extension represents a universally quantified proposition
extension.

NummSquared uses only a few built-in large functions and ways of combining large functions. Small functions
do not appear in NummSquared programs, but enter indirectly because of their role as arguments and results of
large functions.

For a tagged small function extension y, let Lg.constant(y) be the large function extension such that, for each
tagged small function extension x, Lg.constant(y)(x) = y.

Let Lg.i be the large function extension such that, for each tagged small function extension x, Lg.i(x) = x.

Copyright © 2006 Samuel Howse. All rights reserved.



NummSquared: a New Foundation for Formal Methods December 15, 2006 / 7 of 15

Let Lg.null = Lg.constant(null).
Let Lg.zero = Lg.constant(zero).
Let Lg.one = Lg.constant(one).
Let Lg.Null.set = Lg.constant(Null.set).
Let Lg.Nuro.set = Lg.constant(Nuro.set).
Let Lg.Leaf.set = Lg.constant(Leaf.set).
Let Lg.Tree.set = Lg.constant(Tree.set).
Let Lg.Null be the large function extension such that, for each tagged small function extension x, Lg.Null(x) is one

if x = null; and zero otherwise.
Let Lg.Pair be the large function extension such that, for each tagged small function extension x, Lg.Pair(x) is one

if x is a pair tagged small function extension; and zero otherwise.
Let Lg.dom be the large function extension such that, for each tagged small function extension x, Lg.dom(x) =

domFuncExt(x).
For large function extensions outer and inner, the large composition of outer and inner, denoted by [outer inner], is

the large function extension such that, for each tagged small function extension x, [outer inner](x) = outer(inner(x)).
For large function extensions called and arg, the small composition of called and arg, denoted by (called arg), is

the large function extension such that, for each tagged small function extension x, (called arg)(x) = called(x)(arg(x)).
Note that the outermost call is a call to a tagged small function extension.

For large function extensions l and r, the pair of l and r, denoted by {l r}, is the large function extension such that,
for each tagged small function extension x, {l r}(x) = {l(x), r(x)}.

For a large function extension family, the dependent sum of family, denoted by ˜s.d[family], is the large function
extension such that, for each tagged small function extension x, ˜s.d[family](x) = sumDep(family(x)).

For a large function extension family, the dependent product of family, denoted by ˜p.d[family], is the large func-
tion extension such that, for each tagged small function extension x, ˜p.d[family](x) = prodDep(family(x)).

A large function extension may be Curried. The Curried function returns a partial call to the original function.
However, because the partial call is a tagged small function extension, not a large function extension, its domain
must be restricted. For large function extensions uncurry and restrictor, the Curry of uncurry to restrictor, denoted by
˜c[uncurry restrictor], is the large function extension such that, for each tagged small function extension x, ˜c[uncurry
restrictor](x) is the rule tagged small function extension r such that domExt(r) = domExt(restrictor(x)) and, for each
dom(r) program y, r<y> = uncurry({x, tagged(r, y)}).

For large function extensions ifP, thenP and elseP the if-then-else of ifP, thenP and elseP, denoted by ˜ite[ifP
thenP elseP], is the large function extension such that, for each tagged small function extension x, ˜ite[ifP thenP

elseP](x) is as follows:

• elseP(x) if ifP(x) = zero

• thenP(x) if ifP(x) = one

• null if ifP(x) is not Boolean

The well-foundedness of NummSquared enables a terminating recursion principle. For large function extensions
start and step, the recursion of start and step, denoted by ˜r[start step], is the large function extension such that, for
each tagged small function extension x, ˜r[start step](x) is as follows:

• If x = null: ˜r[start step](x) = start(x).

• If x 6= null: ˜r[start step](x) = step({rDom, rRan, x}) where:

Copyright © 2006 Samuel Howse. All rights reserved.



NummSquared: a New Foundation for Formal Methods December 15, 2006 / 8 of 15

– rDom is the rule tagged small function extension such that domExt(rDom) = domExt(x) and, for each for
each dom(rDom) program y, rDom<y> = ˜r[start step](tagged(rDom, y)). Note that rDom is the restriction
of ˜r[start step] to the domain of x.

– rRan is the rule tagged small function extension such that domExt(rRan) = domExt(x) and, for each
dom(rRan) program y, rRan<y> = ˜r[start step](x(tagged(rRan, y))). Note that rRan is the restriction of
˜r[start step] to the range of x.

NummSquared equals is not computable, but is necessary for logic. Let Lg.eq be the large function extension
such that, for each tagged small function extension p, Lg.eq(p) is as follows:

• one if p is a pair tagged small function extension, and left(p) = right(p)

• zero if p is a pair tagged small function extension, and left(p) 6= right(p)

• null if p is not a pair tagged small function extension

Hilbert’s epsilon operator is a version of the axiom of choice, and existential and universal quantification can be
defined from it - see Avigad [2]. In NummSquared, Hilbert (an adaptation of Hilbert’s epsilon operator) is not com-
putable, but is necessary for logic. For a large function extension pred, the Hilbert of pred, denoted by ˜h[pred], is the
large function extension such that, for each tagged small function extension x, ˜h[pred](x) is some tagged small func-
tion extension y such that pred({x, y}) is true if such a y exists; and null otherwise.

3 NummSquared syntax

A few aspects of NummSquared syntax are described. The complete syntax may be found in [9].

3.1 Normalized large functions

Normalized large functions are the syntactic counterpart to large function extensions. Normalized large functions
are divided into normalized constants and normalized combinations. Normalized constants are further divided into
computational normalized constants and non-computational normalized constants. Normalized combinations are
further divided into computational normalized combinations and non-computational normalized combinations.

The computational normalized constants, and their concrete syntax representations, are as follows:

• Constant.Norm.Compu.i - ~i

• Constant.Norm.Compu.null - ~null

• Constant.Norm.Compu.zero - ~zero

• Constant.Norm.Compu.one - ~one

• Constant.Norm.Compu.Null.set - ~Null.set

• Constant.Norm.Compu.Nuro.set - ~Nuro.set

• Constant.Norm.Compu.Leaf.set - ~Leaf.set

• Constant.Norm.Compu.Tree.set - ~Tree.set

• Constant.Norm.Compu.Null - ~Null

Copyright © 2006 Samuel Howse. All rights reserved.



NummSquared: a New Foundation for Formal Methods December 15, 2006 / 9 of 15

• Constant.Norm.Compu.Pair - ~Pair

• Constant.Norm.Compu.dom - ~dom

The non-computational normalized constants, and their concrete syntax representations, are as follows:

• Constant.Norm.Noncompu.eq - ~=

The computational normalized combinations are as follows: (all components are normalized large functions)

• a large composition computational normalized combination f contains outer(f) and inner(f), and is denoted
by [outer(f) inner(f)]

• a small composition computational normalized combination f contains called(f) and arg(f), and is denoted by
(called(f) arg(f))

• a pair computational normalized combination f contains left(f) and right(f), and is denoted by {left(f) right(f)}

• a dependent sum computational normalized combination f contains family(f), and is denoted by
˜s.d[family(f)]

• a dependent product computational normalized combination f contains family(f), and is denoted by
˜p.d[family(f)]

• a Curry computational normalized combination f contains uncurry(f) and restrictor(f), and is denoted by
˜c[uncurry(f) restrictor(f)]

• an if-then-else computational normalized combination f contains ifP(f), thenP(f) and elseP(f), and is denoted
by ˜ite[ifP(f) thenP(f) elseP(f)]

• a recursion computational normalized combination f contains start(f) and step(f), and is denoted by ˜r[start(f)
step(f)]

The non-computational normalized combinations are as follows: (all components are normalized large func-
tions)

• a Hilbert non-computational normalized combination f contains pred(f), and is denoted by ˜h[pred(f)]

For a natural number m ≥ 2, and normalized large functions x0, x1, ..., xm-2, xm-1, let (x0 x1 ... xm-2 xm-1) =
(((x0 x1) ... xm-2) xm-1).

Pairs are used to construct tuples. For a natural number m ≥ 2, and normalized large functions x0, x1, ..., xm-2,
xm-1, let {x0 x1 ... xm-2 xm-1} = {{{x0 x1} ... xm-2} xm-1}.

Pairs are used to construct lists. For a natural number m, and normalized large functions x0, x1, ..., xm-1, let ˜l{x0
x1 ... xm-1} = {x0 {x1 ... {xm-1 Constant.Norm.Compu.zero}}}.

Tuples are used to simulate multi-argument normalized large functions. For a natural number m ≥ 2, and nor-
malized large functions f and x0, x1, ..., xm-1, let [f x0 x1 ... xm-1] = [f {x0 x1 ... xm-1}].

For a normalized large function f, the extension of f, denoted by ext(f), is as follows:

• Lg.i if f = Constant.Norm.Compu.i

• the other normalized constant cases are similar and are omitted

• [ext(outer(f)) ext(inner(f))] if f is a large composition computational normalized combination

Copyright © 2006 Samuel Howse. All rights reserved.



NummSquared: a New Foundation for Formal Methods December 15, 2006 / 10 of 15

• the other normalized combination cases are similar and are omitted

Normalized large functions need not be in simplest form. For example, [Constant.Norm.Compu.i Con-

stant.Norm.Compu.i] 6= Constant.Norm.Compu.i, even though both normalized large functions have the extension
Lg.i.

The result of a normalized large function f, denoted by res(f), is res(ext(f)).
A normalized large function f is true iff ext(f) is true.

3.2 Reduction

The concept of reduction in NummSquared corresponds to the computed of a normalized large function, which is
now defined. Termination of reduction is ensured by defining reduction directly as a computable total function.

A normalized large function f is deep computational iff f contains, directly or indirectly, only computational nor-
malized constants and computational normalized combinations.

For a tree tagged small function extension x, the normal form of x, denoted by norm(x), is as follows:

• Constant.Norm.Compu.null if x = null

• Constant.Norm.Compu.zero if x = zero

• Constant.Norm.Compu.one if x = one

• {norm(left(x)) norm(right(x))} if x is a pair tagged small function extension

For a normalized large function f, the normalized result of f, denoted by resNorm(f), is norm(res(f)) if res(f) is a
tree; and ; otherwise. For a normalized large function f, the computed of f, denoted by computed(f), is resNorm(f) if f
is deep computational; and ; otherwise. Note that computed is a computable total function. Computation generates
an error if the normalized large function is not deep computational or if its result is not a tree. Typically, the output
of software is a tree, even though rules may be used to compute the output. However, in future, the tree restriction
might be removed by defining the normal form of a rule tagged small function extension.

3.3 Reflection

Clearly the NummSquared programmer will want to define new ways to combine normalized large functions. Rather
than introducing super-large functions, NummSquared uses reflection to abstract over all normalized large func-
tions. A language supports reflection iff programs of the language can manipulate (to some extent) programs of the
language.

NummSquared quotation converts a normalized large function to a tree representation, and unquotation is the
inverse process. Unquotation is effectively the interpreter for normalized large functions, and therefore cannot be
called within normalized large functions. Removing this restriction would entail the troubles of the untyped lambda
calculus - see Hoare [7]. Therefore, NummSquared reflection allows normalized large functions to perform only syn-
tactic manipulation of normalized large functions, i.e. operations that do not call the interpreter for normalized
large functions. Syntactic manipulation is sufficient for common usage of macro languages. Thus NummSquared
is its own macro language.

Quotation and unquotation in NummSquared have some conceptual similarities to Gilmore’s implicit quotation
[5], although quotation is explicit in NummSquared. The fact that NummSquared is variable-free simplifies quota-
tion and unquotation.

For a natural number m, the normal form of m, denoted by norm(m), is as follows:

Copyright © 2006 Samuel Howse. All rights reserved.



NummSquared: a New Foundation for Formal Methods December 15, 2006 / 11 of 15

• Constant.Norm.Compu.zero if m = 0

• Constant.Norm.Compu.one if m = 1

• {norm(m - 1) Constant.Norm.Compu.null} if m ≥ 2

Quotation transforms a normalized large function into a tree containing a tag and a child list. For a natural num-
ber tag, and a normalized large function children, let tree(tag, children) be {norm(tag) children}.

For a normalized large function f, let tag(f) be as follows:

• 0 if f = Constant.Norm.Compu.i

• the other normalized constant cases are similar and are omitted

• 12 if f is a large composition computational normalized combination

• the other normalized combination cases are similar and are omitted

For a normalized large function f, the quoted of f (a normalized large function), denoted by quoted(f), is as fol-
lows:

• tree(tag(f), ˜l{}) if f is a normalized constant

• tree(tag(f), ˜l{quoted(outer(f)) quoted(inner(f))}) if f is a large composition computational normalized combi-
nation

• the other normalized combination cases are similar and are omitted

For a normalized large function f, the unquoted of f, denoted by unquoted(f), is the normalized large function g

such that quoted(g) = f if such exists; and ; otherwise. A normalized large function f is quoted iff unquoted(f) 6= ;.
Macro expansion is a shortcut for quotation, computation and unquotation - these three combined are useful for

syntactic manipulation of normalized large functions. For a list l = l<x0, x1, ..., xm-1> of normalized large functions,
quoted(l), is ˜l{quoted(x0) quoted(x1) ... quoted(xm-1)}. For a normalized large function f, and a list l of normalized
large functions, the macro pre-expanded of f at l, denoted by macroPreexpanded(f, l), is [f quoted(l)]. For a normal-
ized large function f, and a list l of normalized large functions, the macro expanded of f at l, denoted by macroEx-

panded(f, l), is ; if computed(macroPreexpanded(f, l)) = ;; and unquoted(computed(macroPreexpanded(f, l))) other-
wise.

3.4 Large functions

Theoretically, NummSquared programs could be written as normalized large functions - but they would be very dif-
ficult to read. Large functions offer a practical and simple syntax that is normalized to obtain normalized large func-
tions. Details are in [9].

3.5 Proofs

NummSquared proofs are constructed from many axioms, and a few modes of inference. A soundness theorem re-
lating proof and truth has been proved. Proofs use classical logic. Proofs are quoted and unquoted in a similar way
to normalized large functions, allowing normalized large functions to manipulate NummSquared proofs. Details are
in [9].

Copyright © 2006 Samuel Howse. All rights reserved.



NummSquared: a New Foundation for Formal Methods December 15, 2006 / 12 of 15

4 Example

A small example is given demonstrating the flexibility of NummSquared compared to type theory. Coq 8.0pl3 [4] is
used as a representative of type theory. Consider the following Coq program:

Inductive Null : Type :=
| Null_null : Null.

Inductive Nuro : Type :=
| Nuro_null : Nuro
| Nuro_zero : Nuro.

Definition f_res_Ty := fun x y : Nuro =>
match x
with
| Nuro_null => Null
| Nuro_zero =>

match y
with
| Nuro_null => Null
| Nuro_zero => Nuro
end

end.

Definition f := fun x y : Nuro =>
match x
return (f_res_Ty x y)
with
| Nuro_null => Null_null
| Nuro_zero =>

match y
return (f_res_Ty Nuro_zero y)
with
| Nuro_null => Null_null
| Nuro_zero => Nuro_zero
end

end.

Definition g := fun
(h : forall x y : Nuro, (f_res_Ty y x))
(x : Nuro) =>
(h x x).

Consider adding the following to the end of the Coq program:

Definition z := (g f Nuro_zero).

Coq gives the following error:

Copyright © 2006 Samuel Howse. All rights reserved.



NummSquared: a New Foundation for Formal Methods December 15, 2006 / 13 of 15

Error: The term "f" has type
"forall x y : Nuro, f_res_Ty x y"
while it is expected to have type
"forall x y : Nuro, f_res_Ty y x"

The reason for the error is that Coq requires a proof that f_res_Ty x y equals f_res_Ty y x in order
for the call to g to type check. Of course, such a proof should ultimately be provided. However, the programmer
may want to do the proof later, particularly during the rapid prototyping phase. Even if the programmer assumes
the proof as a Coq axiom, the definition of z is still made more complex.

As shown below, the definition of z without proof is legal in NummSquared, and the proof may be done later (or
not at all, although that is not recommended). Despite not requiring proof, NummSquared ensures termination and
averts paradoxes. In future, NummSquared may have a way of automatically tracking proofs that should be done
later.

Consider the following NummSquared program. {%x %y} is a local tuple accessor list, which is a replacement
for argument variables since NummSquared is variable-free.

f.res.set {%x %y} =
~ite[

[~Null %x]
~Null.set
~ite[

[~Null %y]
~Null.set
~Nuro.set

]
];

f {%x %y} =
~ite[

[~Null %x]
~null
~ite[

[~Null %y]
~null
~zero

]
];

g {%h %x} = (%h %x %x);

f is a large function and therefore cannot be an argument to g, so f must be Curried to obtain a small function.
~right is defined as follows in [9]:

~right =
~ite[

~Pair
(~i 1)

Copyright © 2006 Samuel Howse. All rights reserved.



NummSquared: a New Foundation for Formal Methods December 15, 2006 / 14 of 15

~null
];

~restrict is defined as follows in [9]: For a normalized large function `unrestrict:

~restrict[‘unrestrict] =
~c[[‘unrestrict ~right] ~i];

For a natural number m ≥ 1, a normalized large function uncurry, and normalized large functions x0, x1, ...,
xm-1, let c[uncurry x0 x1 ... xm-1] = [˜restrict[˜c[...˜c[uncurry xm-1] ... x1]] x0].

f.c = c[f ~Nuro.set ~Nuro.set];

z0 = [g f.c ~zero];

Alternately, g can be Curried as well.
For a natural number m ≥ 1, a normalized large function uncurry, and normalized large functions x0, x1, ...,

xm-1, let p.d[uncurry x0 x1 ... xm-1] = ˜p.d[[˜restrict[˜p.d[˜c[...˜p.d[˜c[uncurry xm-1]] ... x1]]] x0]].

f.rev.res.set {%x %y} =
[f.res.set %y %x];

f.rev.set =
p.d[f.rev.res.set ~Nuro.set ~Nuro.set];

g.c = c[g f.rev.set ~Nuro.set];

z1 = (g.c f.c ~zero);

5 Conclusion

NummSquared semantics and syntax have been overviewed. Advantages of NummSquared include:

• An untyped system that minimizes constraints on the programmer, while still ensuring termination and avert-
ing paradoxes, without the need for the programmer to supply proofs

• Just one fundamental concept: higher-order functions

• No side-effects or global state

• Reflection which allows NummSquared to be its own macro language, and allows NummSquared programs to
manipulate NummSquared proofs

• A simple variable-free syntax with some familiar elements from lambda calculi

• Well-foundedness and use of classical logic, which are both widely used in mathematics and logic

Future work on NummSquared will involve completing NsGo (the NummSquared interpreter), developing
NummSquared libraries, and using NummSquared for software projects.

Copyright © 2006 Samuel Howse. All rights reserved.



NummSquared: a New Foundation for Formal Methods December 15, 2006 / 15 of 15

References

[1] Thorsten Altenkirch and Conor McBride. Towards observational type theory. Manuscript, available online,
February 2006. URL http://www.cs.nott.ac.uk/~txa/.

[2] Jeremy Avigad and Richard Zach. The epsilon calculus. In Edward N. Zalta, editor, The Stanford Encyclopedia of
Philosophy. Stanford University, Summer 2002. URL http://plato.stanford.edu/archives/sum2002/
entries/epsilon-calculus/.

[3] John Backus. Can programming be liberated from the von Neumann style? A functional style and its algebra of
programs. Communications of the ACM, August 1978.

[4] The Coq development team. The Coq proof assistant reference manual. LogiCal Project, 2004. URL http:
//coq.inria.fr/.

[5] Paul C. Gilmore. Logicism Renewed: Logical Foundations for Mathematics and Computer Science. Association
for Symbolic Logic & AK Peters, 2005.

[6] Klaus Grue. Map theory with classical maps. WWW site, June 2001. URL http://www.diku.dk/~grue/.

[7] C. A. R. Hoare and D. C. S. Allison. Incomputability. Computing Surveys, 4(3), September 1972.

[8] Douglas J. Howe. A classical set-theoretic model of polymorphic extensional type theory. URL http:
//citeseer.ist.psu.edu/howe97classical.html. 1997.

[9] Samuel Howse. NummSquared 2006a0 Done Formally. Poohbist Technology, October 2006. URL http://
nummist.com/poohbist/. October 18, 2006 pre-release.

[10] Roger Bishop Jones. Pure functions. WWW site, December 1998. URL http://www.rbjones.com/rbjpub/
logic/inter013.htm.

[11] The F# Manual. Microsoft Corporation, 2006. URL http://research.microsoft.com/fsharp/manual/
default.aspx.

[12] Jonathan P. Seldin. The logic of Church and Curry. In Dov Gabbay and John Woods, editors, Handbook of the
History of Logic, volume 5. Elsevier. URL http://www.cs.uleth.ca/~seldin/publications.shtml.
To appear.

[13] Gaisi Takeuti and Wilson M. Zaring. Introduction to Axiomatic Set Theory. Springer-Verlag, 2nd edition, 1982.

[14] John von Neumann. An axiomatization of set theory. In Jean van Heijenoort, editor, From Frege to Gödel. Har-
vard University Press, 1967. Paper originally published 1925.

Copyright © 2006 Samuel Howse. All rights reserved.


