NummSquared 2006a0 Done Formally

October 18, 2006 / 1 of 203

"The product" means the October 18, 2006 pre-release of "NummSquared 2006a0",
which is the entire contents of the October 18, 2006 version of the PDF

electronic file "NummSquared2006a0DoneFormally.pdf"
Done Formally" PDF document) .

=== Copyright notice ===

The product is copyright (c) 2004-2006 Samuel Howse.

Samuel Howse

Poohbist Technology

607 Francklyn Street

Halifax, Nova Scotia B3H 3B6

Canada

Phone: 1-902-422-0845

Fmail: samuelhowse@nummist.com

Web page: http://nummist.com/poohbist/

(the "NummSquared 2006a0

All rights reserved.

The following license agreement (hereafter "the License Agreement") is a copy,

for your records, of a license agreement that you accepted before downloading
the product from http://nummist.com/. If you did not download the product from
http://nummist.com/, or you did not accept the License Agreement, then you have

received an illegal copy of the product. You must not use illegal copies of the

product, and you must promptly uninstall and destroy all illegal copies of the

product. Please report illegal copying to Samuel Howse (see contact information

in the copyright notice).

=== NummSquared 2006a0 October 18, 2006 pre-release License Agreement ===

Samuel Howse is willing to grant "you" (a natural person, not an organization) a

non-exclusive, non-transferable license to use the product subject to the terms

of this license agreement. To download the product,
license agreement.

How to accept or decline this license agreement

you must first accept this

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 2 of 203

To accept this license agreement, click the "I Accept" link at the bottom of the
license agreement.

To decline this license agreement, click the "I Decline" link at the bottom of
the license agreement, or simply close your web browser.

Terms of this license agreement

All rights not expressly granted herein are reserved. The product is licensed,
not sold. All rights, title and interest in the product remain with Samuel
Howse. Your rights under this license agreement are non-exclusive and
non-transferable.

Section 1: Permissions and prohibitions

Subject to the other terms of this license agreement, the following are
permitted:

(1.1) You may make copies of the product for personal, non-commercial use.

All use of the product, other than use permitted by paragraph (1.1), is
expressly prohibited.

Section 2: Additional prohibitions

In addition, the following are expressly prohibited:

(2.1) Distribute, transfer, sell, rent, lease, license or make available the
product, in whole or in part, to a third party.

(2.2) Include the product, in whole or in part, in a derivative work, archive or
database.

(2.3) Remove or obscure any copyright notices, trademark notices, patent notices
or license agreements on or in the product, in whole or in part.

(2.4) Modify the product, in whole or in part.

(2.5) Translate the product, in whole or in part, into a different
language or electronic format.

(2.6) Compile, interpret, execute or run source code (if any) contained within
the product, in whole or in part.

(2.7) Reverse engineer, decrypt, decompile or disassemble the product, in whole
or in part.

(2.8) Circumvent or disable usage restrictions (if any) built into the product,
in whole or in part.

Section 3: NO WARRANTY

THE PRODUCT IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 3 0of 203

IN NO EVENT SHALL SAMUEL HOWSE BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE PRODUCT OR THE USE OR OTHER DEALINGS IN THE
PRODUCT, EVEN IF SAMUEL HOWSE HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH
DAMAGES.

YOU UNDERSTAND AND ACKNOWLEDGE THAT THE PRODUCT IS RESEARCH IN PROGRESS, AND MAY
CONTAIN ERRORS AND OMISSIONS.

SAMUEL HOWSE IS UNDER NO OBLIGATION TO PROVIDE PRODUCT SUPPORT, INCLUDING BUT
NOT LIMITED TO ERROR CORRECTIONS AND UPDATES.

DIGITAL CODE SIGNATURES AND CERTIFICATES (IF ANY) INCLUDED IN THE PRODUCT ARE
FOR INFORMATIONAL PURPOSES ONLY, AND DO NOT PROVIDE ASSURANCE THAT THE PRODUCT
IS GENUINE OR INTACT.

Section 4: Governing law

This license agreement is governed by the laws of Nova Scotia, Canada.

Section 5: Severability
If any provision of this license agreement is held invalid, illegal or
unenforceable, the remainder of this license agreement shall continue to apply.

Section 6: Entire agreement

With respect to the product, this license agreement constitutes the entire
agreement between you and Samuel Howse, and supersedes all prior or
contemporaneous oral or written communications, understandings and agreements.
This license agreement can be modified only in writing signed by you and by
Samuel Howse.

Section 7: Termination

Without prejudice to any other rights, Samuel Howse may terminate this license
agreement if you fail to comply with any provision of this license agreement. In
such event, you must cease to use the product, and you must uninstall and
destroy all copies of the product.

End of the License Agreement.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 4 of 203

How to cite NummSquared 2006a0 Done Formally

NummSquared 2006a0 Done Formally should be cited as indicated in the [22] entry in the references section near
the end of this document. If you are using BibTeX (with the url and natbib LaTeX packages), the BibTeX entry is:

@Manual (Howse :NummSquared,

title = "NummSquared 2006a0 Done Formally",
author = "Samuel Howse",

organization = "Poohbist Technology",

month = oct,

year = 2006,

url = "http://nummist.com/poohbist/",

note = "October 18, 2006 pre-release"

)

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 5 0of 203

NummSquared 2006a0 Done Formally,
including a new well-founded functional foundation for logic,
mathematics and computer science

Samuel Howse
Poohbist Technology
607 Francklyn Street
Halifax, Nova Scotia B3H 3B6
Canada
Phone: 1-902-422-0845
Email: samuelhowse@poohbist.com
Web page: http://poohbist.com/

October 18, 2006

Abstract

Set theory is the standard foundation for mathematics, but often does not include rules of reduction for func-
tion calls. Therefore, for computer science, the untyped lambda calculus or type theory is usually preferred. The
untyped lambda calculus (and several improvements on it) make functions fundamental, but suffer from non-
terminating reductions and have partially non-classical logics. Type theory is a good foundation for logic, math-
ematics and computer science, except that, by making both types and functions fundamental, it is more complex
than either set theory or the untyped lambda calculus. This document proposes a new foundational formal lan-
guage called NummSquared that makes only functions fundamental, while simultaneously ensuring that reduc-
tion terminates, having a classical logic, and attempting to follow set theory as much as possible. NummSquared
builds on earlier works by John von Neumann in 1925 and Roger Bishop Jones in 1998 that have perhaps not re-
ceived sufficient attention in computer science.

A soundness theorem for NummSquared is proved.

Usual set theory, the work of Jones, and NummSquared are all well-founded. NummSquared improves upon
the works of von Neumann and Jones by having reduction and proof, by supporting computation and reflection,

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 6 of 203

and by having an interpreter called NsGo (work in progress) so the language can be practically used. Numm-
Squared is variable-free.

For enhanced reliability, NsGo is an F#/C# .NET assembly that is mostly automatically extracted from a pro-
gram of the Coq proof assistant.

As a possible step toward making formal methods appealing to a wider audience, NummSquared minimizes
constraints on the logician, mathematician or programmer. Because of coercion, there are no types, and functions
are defined and called without proof, yet reduction terminates. NummSquared supports proofs as desired, but not

required.
Dedication
For the inspirational Dr. L. S. River, and Nummists everywhere.
Visithttp://nummist.com/.
Acknowledgments

Many thanks to Dr. Malcolm Heywood, my PhD supervisor at Dalhousie University, for unbounded good ideas, pa-
tience and support throughout the lengthy PhD process. Thanks to Dr. Peter Hitchcock for insights into software
engineering and program correctness. Thanks to Dr. Anthony Cox for discussions about programming languages,
and for suggesting many useful improvements to the thesis. Thanks to Dr. Paul Gilmore for discussions about his
Intensional Type Theory, and for suggesting many useful improvements to the thesis. Thanks to Hugo Herbelin for
discussions about Coq and type theory, and for suggesting many useful improvements to the thesis. My PhD work
would not have been possible without funding from Dalhousie University, the Killam Memorial Scholarship and the
National Research Council Canada.

Thanks to Jan, Bob, Joe and Dr. L. S. River for many helpful conversations and editing. Thanks to Joe for graphic
design services. Thanks to Mopsy for lots of stuff. Thanks to Dame P. P. Paws for suggesting a clean approach to pro-
gramming. Thanks to the Rt. Hon. Leo L. Lion, my manager at Poohbist Technology, for providing the necessary im-
petus to complete this work. Thanks to Miss Plasma Tigerlilly Zoya for helping me digest the literature.

Contents

1 INtroduction o v v vttt it i it ittt oot o oot o s st s o s ssonsonasennesoonsos 15

2 NummSquared overview and COmpariSOn« v o v v o v vt v oo vt v oo v oo ot o oenconsneeas 17
2.1 Untypedlambda calculus and improvementso 17
2.2 Settheory,von NeumannandJonesttt 18
2.3 Fundamental CONCEPLS v v i v i e e e e e e e e e e e e e e e e e e 19
24 Smallandlargefunctions L e e 19
2.5 Well-foundedness and coercion e e e e 20
2.6 Variable-free L e e e e e e 20
2.7 Reflection L e 20
2.8 Equality e e e 21
2.9 NSGO . . . e 22

3 Formalandinformal. ittt ittt it ittt ettt 22

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 7 of 203

4 Wheretofindtheformalpartttt i it ittt eenneonosssoesssssssenas 23
5 Notationintheinformalpart. vttt it ittt ittt tonetesessoensonnssses 23
6 Dataintheinformalpart ittt ittt ittt ettt e 23
6.1 Equals e e e e 23
6.2 INUll . .. e e e 23
6.3 Booleans 24
6.4 Languages e e e e e e e e e 24
6.5 Models. e e e 24
6.6 Pairsandtuples e e e e e 24
6.7 LiStS . . . e e 25
6.8 Well-foundedrelations e e e 25
6.9 Smalllanguages e e 26
7 NummSquaredsemantiCs v vt v vttt it ittt ottt oot enotoeesteeneeeeeeees 26
7.1 Small function extensions e e e 27
7.2 Domain and specific result of a small functionextension 28
7.3 Rankofasmall functionextension 31
7.4 Identity small function extensions e e 31
7.5 Domain extensions e e e 32
7.6 Domain, domain extension and specific result of a domain extension family 33
7.7 Domain, rank and validity of adomain extension 33
7.8 Domain extension irrelevance theorem L L L e 34
7.9 Domain extensioninference L e 37
7.10 Tagged small function eXtensions e e 39
7.11 Untagged, tagirrelevance theorem, tagged and taggable 40
7.12 Domain, domain extension, specific result and rank of a tagged small function extension 43
7.13 Identity tagged small function extensions e 46
7.14 Coercion of a tagged small function extension, and coercion stability theorem 47
7.15 Result of a tagged small functionextension 51
7.16 Extensionalitytheorem e e e 53
7.17 Some tagged small function extensions L e 54
7.18 Large function extensionsandtruth e 56
7.19 Some computational large function extensions L L oo e 56
7.20 Some computational combinations of large function extensions 57
7.21 Some non-computational large function extensions and combinations 59
8 NummSqUAred SYNEAX . « o« v o v v o v v o v oo v oo oo v oo o oo oo ooensnsensossasensseeas 60
8.1 Normalized large functions e 61
8.2 Extension and truth of a normalized large function 63
8.3 Reduction: computed of a normalized large function 64
84 Normalformofanaturalnumber. 67
8.5 Quoted of anormalizedlarge function L e 68
8.6 Unquoted of anormalized large function 69
8.7 Macroexpanded e e e e 69
8.8 Substitution and substitutiontheorem L L e 70

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 8 of 203

8.9

8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20

8.21

8.22
8.23
8.24
8.25

COMINENTS o ettt e e e e e e e e e e e e e e e 70
Identifiers 71
Large functions. L e e e e e 71
Definitions, definition lists, modules and abstract programs 78
CONEEXES o o o i e e e e e e e e 79
Normal formofaprimitive 81
Normal form of anormalized constant L 81
Normal formofaglobalname e 81
Pseudo-NummsSquared e e e e e e e e 82
Normal formofalocalname. e 82
Localtuple accessorcheck e 83
Normal form of a computational non-normalized constant or computational combination 84
8.20.1 Confirmationwithnull 84
8.20.2 Negationwithnull e 85
8.20.3 Nulltozero o e e 85
8.20.4 Kindpredicates i e e e e e e 85
8.20.5 Treepredicate o e e e e e e 86
8.20.6 Result. e e e 88
8.20.7 ReSIIICL o o e e e e e e e e 88
8.20.8 ResStriCttoIrange i i i it ittt e e e e 88
8.20.9 Nurosetresult e e e e e e 89
8.20.10 Treesetresult e e e 89
8.20.11 Dependentsumresult e e e e e e e 89
8.20.12 Dependent productresult. e e e e e 90
8.20.13 Curryaugmented e e e e e e e e e e e e 91
8.20.14 Curryresult e e e e e e 92
8.20.15 Recursionright-hand-side 92
8.20.16 Negation o it i e e e e e e e e e e e 92
8.20.17 Implicationwithnull e 93
8.20.18 Implication e 93
Normal form of a non-computational non-normalized constant or non-computational combination . 93
8.21.1 Existential quantification e 93
8.21.2 Universal quantification e e e 94
8.21.3 Unaryuniversal quantification L e 94
8.21.4 Small universal quantification e 94
8.21.5 Equalsright-hand-side e 95
8.21.6 Notequals e e 96
8.21.7 Inductivecase o i i e e e e e e e 97
Normal form and validity of alarge function 98
Normal form and validity of a definition, definition list or abstract program 98
Pseudo-NummSquared complete e 99
Some true large function extensionso e e 99
8.25.1 Identity. o i e e e e e e 100
8.25.2 Null e e e 100
8.25.3 ZerO. e e e e 101
8.25.4 0ONe e e e e e e e 102

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 9 of 203

8.25.5 Nullset o e e e e 103
8.25.6 NUIOSEt e e e 104
8.25.7 Leafset e e e 105
8.25.8 Treeset e 106
8.25.9 Large composition L e e e 107
8.25.10 Small composition e e e 107
8.25. 11 Pair e e e e e e 107
8.25.12 Dependent SUIM ot it e e e e e e e e e e e e e e e 109
8.25.13 Dependent product i it e e e e e e 110
82514 CUITY o i e e e e e e e 111
8.25.15 If-then-else 112
8.25.16 Recursion e e e e 113
8.25.17 Propositionallogic e e e 113

8.25. 18 Truth e e e e e 113
8.25.19 Equals e e e e 114
8.25.20 Hilbert o e e e e e 115
8.25.21 Induction e 115
8.25.22 Leftovers e e 115

8.26 Some inferences from true large function extensions L oL oL oL 117
8.26.1 MOAUSPONENS v v v i et e e e e e e e e e e e e e e e e e e e 117
8.26.2 Specialization L 117

8.27 Some true normalized large functions L e 118
8.28 Some inferences from true normalized large functions Lo L. 118
8.28.1 MOAUSPONENS v vt i e i e e e e e e e e e e e e e e e e 118
8.28.2 Specialization e e e e e e 118
8.28.3 Substitution L 118

8.29 Proofs e 118
8.30 Proposition and validity of a proof, and soundness theorem 119
8.31 Quotedofaproof 120
8.32 Proofunquoted of a normalized large function L o L L. 121
8.33 Russell'sparadoxaverted i i e e e e e 121
s 074 + 6 LT (o) 122
10 Prefacetotheformalpart. 0 it it it ittt ittt ittt i st aeennesensees 123
10.1 Theformalpart e e 123
10.2 Aquicksurvey of Coq o o oo e e 123
10.2.1 Coq terms, contexts, environments, type-checking, reduction, normal forms and convertibility 123
10.2.2 COQSOITS . .« v v v o o o e 123
10.2.3 Cogproofs o o v e e e e e e e 124
10.2.4 Coq dependent products, functions and applications 124
10.2.5 Cogqiypecasts. v it i e e 124
10.2.6 Coq modules, commands and global declarations 124
10.2.7 Naming of Coq modules and global declarations 125

10.3 NummSquared Formally Style e e e 125
10.3.1 Make desired types explicitusingtypecastso 125

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 10 of 203

10.3.2 Use Type, NOt Set o o o o e e e e e e e e e 125
10.3.3 Make reusable terms into separate global declarations 125
10.3.4 Useunderscore for hierarchicalnaming 125

11 Fundamentals: Operators: Main ¢ v v v o v v v v v v ot o v o oo o oo s oo nsosnsenossoossos 126
LI1.1 OPEIAtOrS o o o ot e 126
11.2 The constant OPerator v v v i i i e et e e e e e e e e e e e e e e e e 126
11.3 SiMpPle OPerators o o it e 126
11.4 Theidentity simple operator o e e e e e e 126
11.5 BInary Operators o v vt i e e e e e e e e e e e e e e e e e e e 126
11.6 Connective binary Operators vt vt e e e e e e e e e e e e e 126
11.7 Simple binary Operators o i e e e e e e e e e e e e e 127
11.8 Trinary OPeratorS v v it i ittt et e et e e e e e e e e e e 127
11.9 Connective trinary OPEratorS o v v v v vt ittt e et e e e e e e e e e 127
11.10Simple trinary Operators o o v it e e e e e e e e e e e e e e e 127
11.11QuAaternary OPEIators v v v v vt i e b e 127
11.12Connective qUaterNary OPEratOrS« v v vt v vt e e e et e e e e e e e e e e e e e 127
11.13Simple qUAtErNATY OPETAOTS . « .« v v v v v v e 128
11.14QUINAary OPETatOIS v o vt v vt e 128
11.15Connective qUINATY OPETAtOIS v v v v v v e et e 128
11.16Simple qUINAry OPEeratorS o o v v v et e 128
12 Fundamentals: Propositions: Main v ot i v v it it ittt ettt ettt et 128
12.1 Dependencies i i e e e e e e e e e e e e 129
12.2 Propositional predicates e e e e e e 129
12.3 The constant propositional predicate e 129
12.4 Binary propositional predicates e e e e 129
12.5 Connective binary propositional predicates L 129
12.6 Trinary propositional predicates e 129
12.7 Connective trinary propositional predicates 130
12.8 Quaternary propositional predicates e e 130
12.9 Connective quaternary propositional predicates e 130
12.10Quinary propositional predicates L e e 130
12.11 Connective quinary propositional predicates e 130
12.12The true proposition o e e e e e e e e e e 130
12.13The false proposition e e e e e e 131
13 Fundamentals: Booleans: Maint v vttt ittt ittt vt eeeseenesennssensees 131
13.1 Dependenciest i i e e e e e e e e e e e 131
13.2 Booleans e e e e e e e e 131
13.3 Boolean predicates i e e e e e e 131
13.4 The constant Boolean predicate i i e e e e e 132
13.5 Binary Boolean predicates e e e 132
13.6 Connective binary Boolean predicates e 132
13.7 TrinaryBoolean predicates L e 132
13.8 Connective trinary Boolean predicates e 132

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 11 of 203

13.9 Quaternary Boolean predicates e e e 132
13.10 Connective quaternary Boolean predicates e 133
13.11Quinary Boolean predicates e e e e e 133
13.12Connective quinary Boolean predicates e 133
13.13Boolean to proposition e e e e e e e e 133
13.14Booleanequals e e e e e e e 133
13.15B00leannot e e e e e e e e e e e 134
14 Fundamentals: Naturals: Main o vt v i ittt ittt ittt oot s o st onasennssosensos 134
14.1 Dependencies i i i e e e e e e e e e e e 134
14.2 Naturalnumbers L e e e e e e 134
14.3 Abbreviations for some natural numbers L L L L L 134
14.4 Naturalnumberequals 137
14.5 Natural numberiterate e e e e e e 138
14.6 Naturalnumberadd e e e e e e e e 138
14.7 Natural number multiply e e e 138
15 Fundamentals: Naturals: Efficient: Main v v v i ittt ittt ittt et na st eeesnsas 139
15.1 Dependencies i i e e e e e e e e e e e 139
15.2 Efficient natural numbers L e e e e e 139
15.3 Efficientnaturalnumberequals e e 139
16 Fundamentals: Units: Main ¢ v vttt it i ittt it ettt e ot e o s tenesenesseeseos 139
16.1 Dependencies i i e e e e e e e e e 139
16.2 UNItS o o e e e e e e e e e e e e e e e e 139
16.3 Unitequals o ot i e e e e e e e e e 139
17 Fundamentals: Optionals: Main o 0 v ittt it i it ittt ettt et s e s asenesseesses 140
17.1 Dependencies i i i i e e e e e e e e e e e 140
17.2 Optionals e 140
17.3 Optionalrelated to. o e e e e e e e e 140
17.4 Optional related to, connective e e e e 141
17.5 Optional NON-EMPLY o o v it e e e e e e e e e e e e e e e e e 141
17.6 Optionalempty o e e e e e e e e e e e e 141
17.7 Theoptional one OPETator o it it e e e e e e e e 141
17.8 Optional select o e e e e e e e e 142
17.9 Optionalselect, toelement e e e 142
18 Fundamentals: Booleans: AndOptionals. v v v i it ittt ittt it ettt sttt 142
18.1 Dependencies i e e e e e e e e 143
18.2 Booleantooptional e e e e e e e 143
18.3 The Boolean optional operator i i it e e e e e e 143
19 Fundamentals: Choices: Main o ottt it v v vt vttt ottt o oo onsneeenssssssssssas 143
19.1 Dependencies i i e e e e e e e e 144
19.2 ChoiCes o v o e e e e e e e e 144
19.3 Choicerelated to e e e e 144

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 12 of 203

20

21

19.4 Choicerelated to, CONNECLIVE o e e e e e e e e e e e e e e e e, 145
19.5 Choicetooptional e e e e 145
19.6 ChOiCEMEIZE o o i it e et e e e e e e e e e e e e e e 145
Fundamentals: Pairs: Main« . v ot vttt ittt ittt oottt it etenonneeeencosenas 146
20.1 Dependencies i e e e e e e e e e e 146
20.2 PAirs e e e 146
20.3 Pairrelated to. L e e e e e 146
20.4 Pairrelatedto,connective e e e 147
20.5 Triples . . o o o o e e e e e e e e e 147
20.6 Tripleleft 0 o e e 147
20.7 Tripleright O o e e 147
20.8 Tripleleft 1 148
20.9 Tripleright 1 e 148
20.10Quadruples e e e e e e e 148
20.11Quadrupleleft 0 e e e e e e e e 149
20.12Quadrupleright 0 L e e 149
20.13Quadrupleleft 1 e e e e e 149
20.14Quadrupleleft 2 e e e e e e 150
20.15Quadruple right 2 L e e e 150
Fundamentals: Lists: Main o o 0 v vttt i ittt it ittt et e oo eneenesenenssensees 150
21.1 Dependencies v it it e e e e e e e e e e e e e e e 150
21.2 LiStS o o o i o e e e e e e e e e e e e 151
21.3 Listnotation i e e e 151
214 Listrelated to L e e e e e 151
21.5 Listrelated to,connective e 152
21.6 Listhead e 152
21.7 LIStTEST . . . o o e e e e e e e e e e e e e 152
21.8 Listnon-empty o o i e e e e e e 152
219 Listempty o o o e e e e e e e e e e e e e e 153
21.10Listconcatenate e e e e e e e e e e 153
2L11LIStappend o e e e e e e e e e e e e e e e 153
21.12The list SINGletON OPETAtOr o o o i e e e e e e e e e e e e e e e 154
21.13The list singleton binary operator o ittt e e e e e e e e e 154
21.14The list prefix Operator o o i i i e e e e e e e e 154
21.15Thelist suffix operator e e e e e e 155
21.16Listgenerate L e e e e e e e e e e e e e e e 155
21.17Listgenerate, toelement e e e e 155
21.18Non-empty lists L. e 156
21.19Non-emptylistrelated to L e e e 156
21.20Non-empty list related to, connective e e 156
21.21Non-emptylistsingleton L e e 157
21.22Non-empty listtolist L e e e e 157
21.23The non-empty listhead operator e 157
21.24Listtonon-empty list L. e e e e 157

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 13 of 203

22

23

24

25

26

27

21,252 PIUuS lists e e e e e e e e e 158
Fundamentals: Optionals: ANdLiSts o . v v v vt v vttt vttt oot o oo sososesossoensos 158
22.1 Dependencies i i i e e e e e e e e e e e e e e e 158
222 Optional tolist o e e e e e e 158
Fundamentals: Booleans: ANA Lists ¢ v v v v v v ittt ittt ettt v v s oot oessosssnnnas 159
23.1 Dependencies e e e e e e e e e e 159
23.2 Boolean tolist e e e e e e 159
23.3 TheBoolean list Operator 0 it e e e e e e e e e e 159
Fundamentals: Naturals: And Lists 0 it ittt it ittt ittt ettt e tennsseenees 159
24.1 Dependencies e e e e e e e e e 160
24.2 Naturalnumberlists e e e e e e 160
24.3 Naturalnumberlistequals e e e e e 160
Fundamentals: Naturals: Efficient: And Lists00ttt ittt ittt eeteenees 160
25.1 Dependencies e e e e e e e 160
25.2 Efficient natural number lists e e e e e e e e 160
25.3 Efficient natural numberlistequals e e 160
Fundamentals: Pairs: ANdLIStS o o o i i i it ittt ittt it ettt ettt s et 161
26.1 Dependencies i e e e e e e e e 161
26.2 Pairofhead andresttonon-emptylist 161
Fundamentals: Lists: Select. i v v i i i i ittt ittt ittt oo nnsstoeeessssonnas 161
27.1 Dependencies i i e e e e e e e e e 161
27.2 Listselect e e 161
27.3 Listselect,simple 162
27.4 ListSeleCt, iterate v v it i e e e e e e e e e e e e e e 162
27.5 Listselect, toelement e e e e e e e 163
27.6 Listselect, toelement, simple L e e e e 163
27.7 Listselect, to element, iterate i e e e e e e e e 163
27.8 Listselect,byelement. e e e 163
279 Listselect, by element, simple L e 164
27.10List select, by element, iterate L L e e e e 164
27.11List select, by element, introduced e 164
27.12List select, by element, terminated L e e 165
27.13List select, by element, separated L e e 165
27.14List select, by element, to element L e e 166
27.15List select, by element, to element, simple L L L 166
27.16List select, by element, to element, iterate e 166
27.17List select, by prefix, recursive e e e e 167
27.18Listselect, by prefix L e e e 167
27.19List select, by prefix, simple L e e e 168
27.20List select, by prefix, iterate e e e 168
27.21Listselect, by prefix, toelement L e e e 168

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 14 of 203

28

29

30

27.22List select, by prefix, to element, simple L e 169
27.23List select, by prefix, to element, iterate e e 169
27.24LStSearCh L e e e e e e e e e e e e 169
27.25Listsearch, first L 170
27.26List search, isfound e e e 170
27.27Listintersection, match L e 170
27.28LIStINerseCtion o e e e e e e e e e 171
27.29List intersection, CONNECLIVE v v v v e et e 171
27.30Listintersection, first L L e e 171
27.31Listintersection, firSt, CONNECLIVE« o v i e e e e e e e e e e e e e e e e e e 172
27.32List intersection, NON-EMPLY« v v v v it e 172
27.33List intersection, non-empty, CONNECtIVe ottt ittt e e e e 172
27.34Listto Boolean predicate e e e e e e 172
Fundamentals: Optionals: And ListsSelectttt teerneenns 173
28.1 Dependencies v vt it e e e e e e e e e e e 173
28.2 Optional flatten list e e e e e e e e 173
Fundamentals: Listfunctions: Main00ttt it ittt ittt ittt teneneenns 173
29.1 Dependencies i i it e e e e e e e e e e e e e 174
29.2 Listfunctions L e 174
29.3 Listfunctionto Boolean predicate e e e e e e e 174
29.4 Simple listfunctions e e e e e e 174
29.5 Simple listfunction to Boolean predicate e e 174
29.6 Simplelistfunctioniterate e e e e e 175
29.7 Simplelistfunctioniterate, CUrry2 e e e e e 175
29.8 Simple listfunction iterate, cumulative e 175
NummSquared: Syntax: Abstract: Main ¢ ittt ittt ittt eeneeeneseensees 175
30.1 Dependencies i it e e e e e e e e 176
30.2 NummSquared digit characters e e 176
30.3 NummSquared digit characterequals e 176
30.4 NummSquared identifier start characters it 177
30.5 NummSquared identifier start characterequals, 178
30.6 NummSquared identifier continue characters 180
30.7 NummSquared identifier continue characterequals 180
30.8 NummsSquared COMMENTS v v v v vt v e 181
30.9 NummSquared commentequals e e e 181
30.10NummSquared simple identifiers L e e 181
30.11 NummSquared simple identifierequals e 181
30.12NummSquared identifiers L e e e e 182
30.13NummSquared identifierequals L e e e 182
30.14NummSquared simple identifier to NummSquared identifier 182
30.15NummSquared natural number primitives e e e 182
30.16 NummSquared natural number primitiveequals L L e 182
30.17NummSquared character primitives o i e e e e 182

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 15 of 203

30.18 NummSquared character primitiveequals e 182
30.19NummSquared string primitives o e e e e e e e 183
30.20NummSquared string primitiveequals L e 183
30.21 NummSquared primitives o i e e e e e e e e e e e e 183
30.22NummSquared primitive equals e e e e e e 183
30.23NummSquared computational normalized constants 184
30.24 NummSquared non-computational normalized constants 184
30.25NummSquared normalized constants e 185
30.26 NummSquared computational non-normalized constants 185
30.27 NummSquared non-computational non-normalized constants 187
30.28 NummSquared non-normalized constants e e 187
30.29NummSquared CONSIANTS v v v v it et e 187
30.30NummSquared large functions L e e e 188
30.31 NummSquared local tuple accessor lists e 196
30.32NummSquared 1ocal Contexts o it i e e e e e e e e e e e 196
30.33NummSquared definitions e e e e e e e 196
30.34NummSquared global contexts e e 196
30.35NummSquared modules e e e e e e e 197
30.36 NummSquared abstract Programso vttt e e e e e e e e e e e e 197
References v v vt it it ittt i it i i e et i e e et e et e e e 197
5 T L 200
List of Figures
1 Small function extensions e e e e e 30
List of Tables
1 Von Neumann’s axiomatization and combinatory logic roughly compared 19

1 Introduction

The modern personal computer comes bundled with an impressive assortment of software, and much more soft-
ware and content is available on the Web (often at no additional cost). For typical use, disk space for storing software
and documents is practically unlimited. Powerful CPUs sit idle most of the time.

Unrestricted functionality comes at low initial monetary cost, but at a high cost in complexity and security. Most
installed software has almost unrestricted access to all data and other software on the computer. Even for Web con-
tent that is not explicitly installed by the user, security loopholes are frequently exploited. And even trusted software
may contain errors that interfere with other software, damage data, or impact system stability.

For the most part, programmers are aware of these issues, and want to write secure software that has minimal
impact on the remainder of the system. Languages with memory safety and automatic memory management (such
as C#, Java and OCaml - see [31, chapter 1], [14, chapter 1] and [24]) offer substantial improvements by preventing
memory corruption and memory leak errors. As a result, the programmer may take the convenient view that mem-
ory is a safe place to store data, and be mostly correct in this view. However, in the imperative paradigm, side-effects

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 16 of 203

can still result in memory contents changing unexpectedly. The functional paradigm eliminates side-effects, thus
presenting a view of memory that is both safe and mathematically elegant.

A substantial part of the complexity and security problem is the view of the computer (aside from memory) that
the operating system and language present to the programmer. The typical view is easily summarized in two words:
global state.

Because all processes share access to a single file system, any one process must view the state of the file system
as being almost completely indeterminate. (Two notable exceptions are that the operating system preserves cer-
tain structural properties, and that files may be locked while a process is running.) Bad software reacts to file system
non-determinism non-deterministically. Good software will at least handle the errors, but still cannot always pro-
vide the desired functionality.

Interprocess communication is another source of complexity and security problems, since typically any process
can send a message to any other. In the physical world, much is possible because agents can act independently and
interact freely. The digital world we have created is a reflection of the physical one, in both its endless possibilities,
and its occasional descent into chaos.

This document does not suggest that the complexity of the modern personal computer is unnecessary. But it
does propose a way in which much is possible with very simple and mathematically elegant tools.

Set theory is the standard foundation for mathematics, but often does not include rules of reduction for function
calls. Therefore, for computer science, the untyped lambda calculus or type theory is usually preferred. The untyped
lambda calculus (and several improvements on it) make functions fundamental, but suffer from non-terminating
reductions and have partially non-classical logics. Type theory is a good foundation for logic, mathematics and com-
puter science, except that, by making both types and functions fundamental, it is more complex than either set the-
ory or the untyped lambda calculus. This document proposes a new foundational formal language called Numm-
Squared that makes only functions fundamental, while simultaneously ensuring that reduction terminates, having
a classical logic, and attempting to follow set theory as much as possible. NummSquared builds on earlier works by
John von Neumann in 1925 ([40]) and Roger Bishop Jones in 1998 ([26]) that have perhaps not received sufficient
attention in computer science.

A soundness theorem for NummSquared is proved.

Usual set theory, the work of Jones, and NummSquared are all well-founded. NummSquared improves upon the
works of von Neumann and Jones by having reduction and proof, by supporting computation and reflection, and
by having an interpreter called NsGo (work in progress) so the language can be practically used. NummSquared is
variable-free.

For enhanced reliability, NsGo is an F#/C# .NET assembly that is mostly automatically extracted from a program
of the Coq proof assistant. (See [8] and [32].)

As a possible step toward making formal methods appealing to a wider audience, NummSquared minimizes con-
straints on the logician, mathematician or programmer. Because of coercion, there are no types, and functions are
defined and called without proof, yet reduction terminates. NummSquared supports proofs as desired, but not re-
quired.

NummSquared aims to hide much complexity from the programmer. The programmer sees only mathematical
functions, and proofs of their properties. Because a NummSquared program may include propositions, computa-
tions and proofs, it may serve as specification, implementation, and proof that implementation satisfies specifica-
tion. Side-effects and global state, including the file system and processes, are not part of the NummSquared view.
Such a simplified view is ideal for the computational and logical tasks that are the core of almost any software. Mix-
ing global state manipulation with these tasks would obscure their essentially mathematical nature.

A NummSquared program may be a component of a larger software project. Other components can handle in-
teraction with the global state, while delegating the computational and logical tasks to NummSquared programs.
Because NummSquared has a simple variable-free syntax and is untyped, it is easy for other components to generate

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 17 of 203

and process NummSquared programs.

Much has already been accomplished with formal methods. For example, Praxis’s SPARK language is a subset of
Ada that enables formal reasoning, and has been used for major industrial projects (see [33]). And [13] used Coq to
check a proof of the Four Colour Theorem. The goal of NummSquared is to provide a foundation that is particularly
simple, since it is based on untyped functions. Future research will apply and adapt NummSquared to large software
projects, with the hypothesis that its simplicity is an asset.

2 NummSquared overview and comparison

NummSquared is a formal language, and a new well-founded functional foundation for logic, mathematics and
computer science. A language ‘L is well-founded iff ‘L includes a well-founded relation on all ‘L objects.
NummSquared meets all of the following goals:

* Functions are the only fundamental concept. There are no side-effects or global state.
* Include reduction and ensure that it always terminates.

* Minimize constraints on the logician, mathematician or programmer. In particular, because of coercion, there
are no types, and functions are defined and called without proof, yet reduction terminates. NummSquared
coercion is (loosely) a generalization to higher order functions of coercion (type conversion) found in many
programming languages.

* Proofs as desired, but not required. Because a NummSquared program may include propositions, computa-
tions and proofs, it may serve as specification, implementation, and proof that implementation satisfies speci-
fication.

The motivation behind these goals is the idea that formal methods is more appealing when the language is sim-
ple, when proofs do not get in the way, and when termination of reduction is nonetheless ensured. It seems that
many mathematicians have little interest in types, and many programmers have little interest in proofs. (Logicians,
due to their focus on foundations, are often interested in both.) Perhaps by removing types and delaying proofs,
NummSquared will be a step toward making formal methods appealing to a wider audience.

NummSquared has a classical logic. Also, NummSquared attempts to follow set theory as much as possible, since
set theory is the standard foundation for mathematics.

A soundness theorem for NummSquared is proved.

NummSquared is variable-free.

NummSquared supports reflection for extending the syntax of the language, and for manipulating Numm-
Squared functions and proofs.

NummSquared has an interpreter, NsGo (work in progress), so the language can be practically used. For en-
hanced reliability, NsGo is an F#/C# .NET assembly that is mostly automatically extracted from a program of the Coq
proof assistant. (See [8] and [32].) NsGo (and hence NummSquared programs) inherit memory safety and automatic
memory management from .NET.

NummSquared is now overviewed and compared to existing foundations.

2.1 Untyped lambda calculus and improvements

The untyped lambda calculus (see [6, section 2]) suffers from non-terminating reductions. Letting ‘f be (lambda x. (x
x)), consider (‘f ‘f), which reduces to itself.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 18 of 203

The untyped lambda calculus, when augmented by negation for use as a logic, suffers from Russell’s paradox.
Letting ‘R be (lambda x. (not (xx))), consider (‘R ‘R), which reduces to (not (‘R ‘R)). Thus (‘R ‘R) cannot be either
true or false - a contradiction (see [35, p.3]). Also, the untyped lambda calculus augmented by implication results
in Curry’s paradox (see [35, p.17]).

Church invented the untyped lambda calculus in 1932 and, in reponse to the paradox, Church’s type theory in
1940 (see [35, p.4,8]). However, Russell discovered in 1902 his paradox in Frege’s predicate calculus (see [41, section
2] and [25]). Russell’s paradox exploits Frege’s course-of-values notation (which is somewhat similar to lambda nota-
tion), together with Frege’s Basic Law V and Rule of Substitution. Course-of-values notation, together with Basic Law
V, create a distinct object for each function, but there are more functions than objects. Russell’s solution to the para-
dox in 1903 was Russell’s theory of types. In summary, Frege’s predicate calculus and Russell’s theory of types can be
seen as precursors to the untyped lambda calculus and Church’s type theory, respectively.

An improvement on the untyped lambda calculus in [2, section 2.2] resolves Russell’s paradox, but some proposi-
tions are neither true nor false.

Gilmore’s NaDSyL (see [12, abstract, section 2.4]) resolves Russell’s paradox, and furthermore formulas are either
true or false. However, the set of formulas is undecidable, and no internal predicate corresponding to the set of for-
mulas is demonstrated.

Grue’s map theory (see [16, p.13-14, section 8.6, chapter 11]) is an improvement on the untyped lambda calculus
that includes ZFC set theory, but excluded middle is false in general, although excluded middle is true in an impor-
tant special case.

[21, section 2.2] defines a programming language that includes the untyped lambda terms and also set-theoretic
functions. Untyped lambda terms can be restricted to set domains, and thus used as arguments to set-theoretic
functions.

None of the above improvements on the untyped lambda calculus eliminate non-terminating reductions, and
each, except Howe, has a logic that is partially non-classical. (In the case of NaDSyL non-classicality appears differ-
ently: as undecidability of the set of formulas. In the case of Howe, the programming language is not itself a logic,
although it is used to give semantics to Nuprl.)

2.2 Set theory, von Neumann and Jones

Zermelo’s solution to Russell’s paradox in Frege’s predicate calculus, with extensions by Fraenkel, resulted in ZF set
theory, which builds up sets from existing sets (see [17, p.156-157,180-181]). ZF does not use types to avoid paradox.
Instead, ZF replaces Frege’s course-of-values notation with more restricted abstraction: the axiom of replacement.
ZF plus the axiom of choice is called ZFC (see [36, p.84,132-133]). In ZE, because of the axiom of regularity, member-
ship is a well-founded relation on ZF sets - see [36, p.21]. Thus ZF is well-founded.

The axiomatization of functions by von Neumann ([40]) is conceptually related to ZFC, and has been adapted by
others into a set theory called von Neumann-Bernays-Gédel (NBG) - see [30, p.176]. Since set theory is the standard
mathematical foundation, it is understandable that von Neumann’s work was adapted into a set theory for purposes
of comparison with other set theories. But computer science is primarily about computable functions, and many set
theories, including ZFC and NBG, do not include rules of reduction for function calls, or even rules of reduction for
set membership. (Sometimes it is argued that NBG is simpler than von Neumann’s original work. Actually, neither
is simpler: they address different conventions. In mathematics, the convention is set theory in first order logic; in
computer science, the convention is a theory of functions.)

Even though von Neumann’s axiomatization lacks rules of reduction, it is conceptually somewhat similar (see ta-
ble 1) to combinatory logic (see [37, section 3]), which is closely related to the untyped lambda calculus. But, while
von Neumann’s axiomatization is a good foundation for logic and mathematics, combinatory logic and the un-
typed lambda calculus are not (because, when augmented by negation and excluded middle, they suffer from Rus-

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 19 of 203

sell’'s paradox; and augmenting by implication results in Curry’s paradox). So it is interesting that the most popular
foundations for computer science are the untyped lambda calculus, and untyped (but partially non-classical) and
typed improvements on it which eliminate the paradoxes, rather than von Neumann’s axiomatization which is more
closely related to set theory in classical logic.

von Neumann | combinatory logic
axiom II.1 I combinator
axiom II.2 K combinator
axiom I1.6 S combinator

Table 1: Von Neumann’s axiomatization and combinatory logic roughly compared

Jones proposed Pure Functions ([26] as an axiomatization of functions that is related to ZFC. Pure Functions is
defined using the formal language HOL (augmented with ZFC). However, Pure Functions lacks rules of reduction.

Farmer ([10]) proposed “STMM: A Set Theory for Mechanized Mathematics”. STMM is based on NBG and, in
STMM, sets, not functions, are fundamental. However, STMM does have lambda notation for functions, and nota-
tion for function calls.

2.3 Fundamental concepts

Like the untyped lambda calculus (and improvements), type theory, von Neumann’s axiomatization and Pure Func-
tions, NummSquared makes functions fundamental. As in the untyped lambda calculus and Pure Functions, in
NummSquared, functions are the only fundamental concept.

Unlike set or type theory, NummSquared does not make sets or types fundamental.

2.4 Small and large functions

In von Neumann’s axiomatization, there is a particular object representing false. A function can itself be used as an
argument iff the result of the function does not too often differ from false (see [40, p.397], which includes a more
precise definition). False might be considered as the default result of the function, and the default cannot too often
be overridden. The criterion for being used as an argument is not computable, which is problematic from a practical
perspective.

In von Neumann’s axiomatization there are also functions that cannot be used as an argument or result. In Pure
Functions there are functions that are external functions (taking the form of HOL functions - see [26, “Functional
Abstraction”]). An external function can be restricted to the domain of an internal function, in order to obtain an
internal function.

Somewhat similarly to von Neumann and Pure Functions, NummSquared distinguishes small and large func-
tions. Like von Neumann, both small and large functions are defined over all small functions, and they always return
small functions.

In NummSquared, for simplicity, only large functions appear directly in NummSquared programs, which differs
from von Neumann and Pure Functions.

In NummSquared, a large function ‘f can be Curried. The partial call to to ‘fis a small function, and is restricted
using the domain of a small function.

Neither von Neumann nor Jones attempt to make functions computable.

NummSquared improves upon von Neumann'’s axiomatization and Pure Functions in several ways:

e NummSquared has reduction and proof. Because Pure Functions is defined within HOL, Jones applies HOLs
proofs at the metalevel.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 20 of 203

* In NummSquared, coercion is used to define small functions over all small functions, while maintaining com-
putability. This generalized definition of result is the basis for reduction.

e NummSquared supports reflection.

* NummSquared has an interpreter, NsGo (work in progress), so the language can be practically used.

2.5 Well-foundedness and coercion

As already mentioned, ZF is well-founded. So is NBG when the axiom of regularity is included - see [30, p.216]. In
Pure Functions, membership in the field of a Pure Function is a well-founded relation on Pure Functions. Thus Pure
Functions is well-founded.

An important subset of map theory (called the classical maps) is well-founded - see [15, p.18]. The range of a clas-
sical map is built up from existing classical maps. However, classical maps are defined over all maps, so the inductive
hypothesis involves an interesting complexity metric in place of assumptions about elements of the domain.

NummSquared, unlike map theory, is well-founded in a similar way to Pure Functions: membership in the field
of a NummSquared non-null small function is a well-founded relation on small functions. However, NummSquared
small functions, like map theory classical maps, are defined over all small functions (in keeping with the goal of min-
imizing constraints). This is accomplished as follows: a NummSquared small function ‘f has a domain (a small sub-
language of the language of all small functions), but coercion (which is computable) is used to define ‘f over all small
functions, even those outside the domain of ‘f. NummSquared coercion is somewhat related to the restriction of un-
typed lambda terms to set domains in [21, section 2.2]. Observational Type Theory in [1, section 2.2] has explicit
coercion requiring proof of type equality, whereas NummSquared coercion is automatic and does not require the
programmer to supply proof.

The well-foundedness of NummSquared strengthens the connection between NummSquared and set theory.

2.6 Variable-free

In NummSquared, a combination is a large function that combines one or more large functions (somewhat simi-
lar in concept to the functional forms of Backus’s FP - see [5, section 11.1]). Like FB NummSquared is variable-free.
Combinations make variables unnecessary. (Of course, variable syntactic sugar for NummSquared would be possi-
ble.)

Function calls do not appear in NummSquared. Sometimes it is said that variable-free languages are difficult
to read. Actually, it is mostly a question of the notation to which one is accustomed. Therefore, although Numm-
Squared is variable-free, NummSquared large and small composition combinations are written, in the concrete syn-
tax, using lambda calculus function call notation. So NummSquared looks, in the concrete syntax, somewhat like the
corresponding lambda calculus notation with the variables removed. Furthermore, NummSquared has local tuple
accessors as a replacement for argument variables.

2.7 Reflection

Programmers often find it useful to extend the syntax of a language. Macro languages can provide such functionality,
but a macro language often lacks the nice features of the language being extended. Therefore, a better solution is
reflection: For a language ‘L, ‘L supports reflection iff ‘L. programs can manipulate (to some extent) ‘L programs.

As pointed out by [19, section 7], a language ‘L with terminating reduction (such as NummSquared) cannot ex-
press the ‘L interpreter. There are several ways of dealing with Hoare’s incomputability result:

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 21 of 203

* Common usage of macro languages involves syntactic manipulations, meaning operations that do not require
calling the ‘L interpreter. Expressing in ‘L. macros performing syntactic manipulations does not require ex-
pressing in ‘L the ‘L interpreter.

e Partial reflection, as proposed by [20, p.2-3]: For some part of ‘L, it may be possible to express in ‘L the inter-
preter for that part of ‘L. Clearly, the chosen part of ‘L cannot express the interpreter for that part.

* It may be possible to express in ‘L the bounded interpreter for ‘L, meaning the function identical to the ‘L in-
terpreter, except that it halts with an error if interpretation does not complete in a pre-specified number of
steps.

Gilmore’s ITT supports a very useful implicit quotation facility by allowing certain terms of a predicate type to
have a secondary type: the type of subjects (see[11, p.xii,74]). Subject terms may be “mentioned”, but not “used”
(called).

Even without reflection, NummSquared’s large functions allow abstraction over all small functions. Therefore,
reflection in NummSquared is directed at allowing abstraction over all large functions, without resorting to introduc-
ing super-large functions, etc.

NummSquared reflection works as follows: In NummSquared, quotation converts from a large function to a tree
representation that can be manipulated by functions (small and large), and unquotation is the inverse process. Un-
quotation cannot be used within small or large functions - a necessary restriction since unquotation is effectively
the interpreter for large functions. That restriction does not prevent syntactic manipulations, thus NummSquared
reflection partly eliminates the need for a macro language.

NummSquared quotation and unquotation have some conceptual similarities with Howe’s partial reflection and
Gilmore’s implicit quotation (although NummSquared quotation is explicit). NummSquared reflection is greatly
simplified by the fact that NummSquared is variable-free.

In logic, reflection is also useful: For a language ‘L, ‘L supports logical reflection iff ‘L programs can manipulate
‘L proofs. For example:

* Artemov'’s Explicit Reflection Principle allows one to infer a formula from an internal proof of that formula (see
[3, section 7]).

* Because Coq is typed, Coq proofs are Coq terms according to the Curry-Howard isomorphism (see [8, “Intro-
duction”, section 4.1.1]).

NummSquared proof reflection works as follows: In NummSquared, all proofs are in a tree representation that
can be manipulated by functions (small and large).

2.8 Equality

Arelation ‘R on functions is an extensional equality iff, for any two functions fand ‘g, ‘R relates ‘f and ‘g iff the do-
mains of ‘f and ‘g are equal, and the results of ‘f and ‘g (for any program of the common domain) are equal. An ex-
tensional equality equates functions that implement different algorithms (see [18, question 35]). Furthermore, an
extensional equality is not computable. Therefore, an extensional equality is somewhat problematic in computer
science. In von Neumann’s axiomatization and Pure Functions, equality is extensional.

In NummSquared, rule small functions are represented by rules, whereas simple small functions are represented
by simpler means. NummSquared has equality, which is extensional on rule small functions. Equality cannot be
used in reduction because it is not computable, but equality is essential in propositions. However, equality deeply
excluding rule small functions is computable and can be used in reduction.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 22 of 203

Gilmore’s Intensional Type Theory (ITT) includes an appealing Rule of Intensionality stating that the intensions
of two predicates are Leibniz equal iff their names are Leibniz equal. Gilmore avoids Russell’s paradox by treating
a predicate term as a name only when the predicate term has no free predicate variable. (See [11, p.xii,85-86].) The
concept of the Rule of Intensionality is important for equality in computer science.

HiLog equality ([7, p.2-3]) is based on names, and is computable.

In future, NummSquared equality on rule small functions may be adapted to include some aspects of ITT and
HiLog. At present, an extensional equality on rule small functions is chosen for logical and mathematical simplicity,
despite the problems for computer science. An extensional equality on rule small functions strengthens the connec-
tion between NummSquared and set theory (for example, the axiom of extensionality in ZF - see [36, p.8]).

2.9 NsGo

A NummSquared program must somehow interact with other software, albeit indirectly. NsGo supports two meth-
ods of interaction:

e When run as a process, NsGo receives a purported NummSquared program on standard input, and produces
either program output or error messages on standard output (depending on whether the purported program
actually is a NummSquared program). NsGo also returns an exit code. When NsGo is run as a process, these
are the only ways in which NsGo (and hence NummSquared programs) interact with other software. Severely
restricting interaction with other software isolates NsGo from global state changes, and makes security much
simpler. Since NsGo does not affect global state, recovering from a crash (for example, power failure) simply
involves re-running NsGo.

* Alternatively, because NsGo is a .NET assembly, NsGo can be used as a library (and called in various ways)
from within .NET programs.

Progress towards NsGo can be found in [22].

3 Formal and informal

A language is an unordered collection of things without duplicates. For a language ‘L, a program of ‘L is a thing be-
longing to ‘L. For languages ‘L0 and ‘L1, ‘L0 = ‘L1 iff, for each thing ‘%, ‘x is an ‘L0 program iff ‘x is an ‘L1 program.

Alanguage ‘L is formal iff ‘L is defined precisely. A language ‘L is informal iff ‘L is not formal. Mathematical En-
glish is an example of an informal language.

A document (such as the one you are reading) comprises programs of one or more languages. For a document
‘d, the formal part of ‘d is that part of ‘d comprising programs of formal languages; and the informal part of ‘d is
that part of ‘d comprising programs of informal languages. Informal comments written within the formal part are
considered to belong to the informal part, not the formal part.

Here are some uses for the formal and informal parts of a document:

¢ Some practical aspects are best expressed in the informal part. For example, the informal part of the docu-
ment you are reading is now being used to discuss the roles of the formal and informal parts of documents in
general.

* Although it is preferable to define ideas in the formal part, the informal part is still useful for explaining ideas,
and for relating ideas in the formal part to existing ideas in the informal part.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 23 of 203

* The informal part is sometimes useful for defining a new formal language and relating it to existing languages
(formal and informal). However, with the availability of good existing formal languages, it is preferable to use
the formal part to define a new formal language and relate it to existing formal languages, using the informal
part only when necessary to relate a new formal language to existing informal languages.

The formal part and informal part are the formal and informal parts, respectively, of the document you are read-
ing.

4 Where to find the formal part

The document you are reading consists firstly of the informal part, including detailed definitions, theorems and
proofs in mathematical English of the NummSquared metatheory. At the end of this document, NummSquared
metatheory is expressed in the formal language Coq - this is currently a work in progress.

5 Notation in the informal part

Some notation is used in the informal part.

Where a phrase is defined, the phrase is written like this.

Text is given emphasis by writing it like this.

When quoting sources, the text is written “like this”, as with the following pearl from Dr. L. S. River:

“LSR + T =F — TOTAL CLUELESS”

Informal identifiers are words beginning with grave accent (‘). Informal identifiers are case-sensitive, and may in-
clude periods (.). Here are four distinct informal identifiers: ‘x, ‘X, ‘X0 and ‘A.x. Informal identifiers are distinct from
identifiers in the formal part, and from identifiers of some language being discussed.

A natural number is one of the things 0, 1, 2, ... (each distinct from the others). Let ‘Nat be the language of all
natural numbers.

A Unicode code point (see [39, section 2.4]) is a natural number in the range 0-1114111. Let ‘Unicode be the lan-
guage of all Unicode code points.

A single isolated character in fixed-width font (the font distinguishes it from other text) represents a Unicode
code point. Example: H.

Two or more adjacent characters in fixed-width font represent a list (see below) of ‘Unicode. Example:

"Hello, world!'"?

6 Datain the informal part

Various kinds of data are now defined for use in the informal part. The language of the informal part is intended to
provide approximately the same capabilities as NBG set theory (see [30, p.176]).

6.1 Equals

Let x = ‘yiff x and ‘y are equal (equals must be defined for various kinds of data). Letx # yiffnotx=vy.

6.2 Null

The thing ‘null is introduced. ‘null should be interpreted as the absence of relevant information, like the null pointer
in many programming languages.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 24 of 203

6.3 Booleans

A Boolean is either 0 or 1, which should be interpreted as false or true, respectively. Let ‘Boo be the language of all
Booleans.
For a Boolean ‘b, the negation of ‘b, denoted by ‘not(‘b), is 0 if ‘b = 1; and 1 otherwise.

6.4 Languages

To avoid confusion between the informal part and some language being discussed, the term language is preferred to
the more conventional term set.

For languages ‘L0 and ‘L1, ‘L0 is a sub-language of ‘L1 iff each ‘L0 program is an ‘L1 program.

The empty language, denoted by ‘Lang.empty, is the language that has no programs.

For alanguage ‘L, ‘L is empty iff ‘L = ‘Lang.empty.

For a thing ‘x, the singleton of x, denoted by ‘sing(‘x), is the language whose only program is ‘x.

For languages ‘L0 and ‘L1, the intersection of ‘L0 and ‘L1, denoted by ‘intersect(‘L0, ‘L1), is the language of all
things x such that x is an ‘L0 program and an ‘L1 program.

For languages ‘L0 and ‘L1, the union of ‘L0 and ‘L1, denoted by ‘union(‘L0, ‘L1), is the language of all things ‘x
such that xis an ‘L0 program or an ‘L1 program (or both).

6.5 Models

A model is a language ‘S, together with a mapping from each ‘S program to a particular thing. For a model ‘m, the
source of ‘m, denoted by ‘src(‘m), is the language part of ‘m. For a model ‘m, and a ‘src(‘m) program ‘x, the inter-
pretation by ‘m of x, denoted by ‘m(‘x), is the unique thing ‘m assigns to x. For models ‘m0 and ‘m1, ‘m0 = ‘m1 iff
‘src(‘m0) = ‘src(‘m1) and, for each ‘src(‘m0) program ‘%, ‘m0(‘x) = ‘m1(‘x).

To avoid confusion between the informal part and some language being discussed, the term model is preferred to
the more conventional term function.

For a model ‘m, the destination of ‘m, denoted by ‘des(‘m), is the language of all ‘m(‘x) such that xis a ‘src(‘m)
program.

For a model ‘m and a language ‘S, ‘m is from ‘S iff ‘src(‘m) = ‘S.

For a model ‘m and a language ‘D, ‘m is to ‘D iff ‘des(‘m) is a sub-language of ‘D.

For alanguage ‘S, and a thing ‘y, the constant model from ‘S to ‘y, denoted by ‘constant(‘S, ‘y), is the model ‘m
from ‘S such that, for each ‘S program ‘x, ‘m(x) = ‘y.

For a language ‘S, the identity model on ‘S, denoted by ‘identity(‘S), is the model ‘m from ‘S such that, for each ‘S
program ‘X, ‘m(‘x) = ‘x.

6.6 Pairs and tuples

A pair is an ordered collection of two things, possibly with duplicates. For a pair ‘p, the left and right of ‘p are thing
one and thing two of ‘p, respectively. For a pair ‘p, let ‘left(‘p) and ‘right(‘p) be the left and right of ‘p, respectively. For
pairs ‘p0 and ‘p1, ‘p0 = ‘pl iff ‘left(‘p0) = ‘left(‘p1) and Tight(‘p0) = ‘right(‘p1). For things x0 and k1, let <x0, x1> be
the pair ‘p such that ‘left(‘p) = x0 and ‘right(‘p) = x1.

Pairs are used to represent tuples (in a manner similar to [36, p.16]).

For a natural number ‘m = 2, and a thing ‘t, the property of ‘t being an ‘m tuple is defined by recursion on ‘m:

e If ‘m =2: ‘tis an ‘m tuple iff ‘t is a pair.

e If ‘m > 2: ‘tis an ‘m tuple iff ‘t is a pair and ‘left(‘t) is an ‘m - 1 tuple.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 25 of 203

For a natural number ‘m = 2, and things %, X7, ..., ‘X‘m_z» ‘X‘m—l’ let <'xq, X7, .0y ‘X‘m-z' ‘X‘m-l > be the ‘m tuple
<<<XQ, X1> ooy Xy 2>, X 11>

For a pair ‘p = <1, ‘r>, let ‘flip(‘p) be <'r, ‘1>.
6.7 Lists

Pairs are used to represent lists (in a manner similar to [29]).
Lists are defined inductively. A list is exactly one of the following:

e 0
e <‘h, r>where ‘ris alist

Alist ‘1is empty iff ‘1 = 0. The empty list is represented by 0, not ‘null. The empty list is often interpreted differ-
ently than the absence of relevant information.
For a non-empty list <‘h, ‘r>, the head of ‘], denoted by ‘head(‘]), is ‘h; and the rest of ‘1, denoted by ‘rest(‘l), is ‘r.
For alist I, the length of ‘], denoted by ‘len(‘]), is defined by recursion on ‘1:
e 0if1=0

e ‘len(r) + 1if1=<‘h, >

For a natural number ‘m, and things %, X7, ..., X4qy,_1, letI<xg, X1, ..., X¢,_1> be the length ‘m list <*xg, <%y, ...
<Xn-1» 0>>>,
Foralist 1=1<%g, X1, ..., ‘X‘m—l >, an element of ‘l is one of kg, X1, ..., ‘X‘m-l-

For alanguage ‘L, and a list ‘I, ‘lis of ‘L iff each element of ‘l is an ‘L program.

For a non-empty list 1=1<'%%g, %1, ..., ‘X‘m-z’ ‘X‘m-l >, the tail of ‘], denoted by ‘tail(‘]), is ‘x
1, denoted by ‘pretail ('), is 1<‘xg, X1, ..., Xqpy_2>.

For lists ‘10 = 1<%q, X1, ..., ‘X‘m-l > and ‘11 =1<%y, ‘v1, ..., ‘y‘n-l >, the concatenation of ‘10 and ‘11, denoted by ‘10
+ 11, is 1<%, X1, vy X215 YO V15 o0 Yon-1>-

For a property ‘P and a list ‘1 = 1<%, %, ..., ‘X‘m-l >, the search for ‘P in ‘1is the list of those <0, x>, <1, x1>, ...,
<‘m-1, X4y,.1> whose right satisfies ‘P (in order).

For a property ‘P, and a list ‘1 = 1<'xq, X7, ..., X¢y,.1>, the search first for ‘P in ‘1 is the head of the search for ‘P in ‘1
if the search for ‘P in ‘lis non-empty; and ‘null otherwise.

For a property ‘P and alist 1 =1<*%q, xq, ..., Xm-1> the search first index for ‘P in ‘1is ‘null if the search first for
‘P in ‘1is ‘null; and the left of the search first for ‘P in ‘1 otherwise.

For a property ‘B and a list ‘1 = 1<), Xy, ..., X¢y,.1>, the search first data for ‘P in ‘lis ‘null if the search first for ‘P
in ‘lis ‘null; and the right of the search first for ‘P in ‘1 otherwise.

For a property ‘P, and a list 1=1<%g, Xy, ..., X4y,.1>, the search length for ‘P in ‘1 is the length of the search for ‘P
in ‘L

For a property ‘P and a list 1 =1<%g, Xy, ..., Xqy,_1>, ‘P is duplicitous in ‘1iff the search length for ‘P in Tis > 1.

m-1’ and the pretail of

6.8 Well-founded relations

For a property ‘B and a relation < on ‘B, < is well-founded iff there is no model ‘x from ‘Nat such that, for each nat-
ural number ‘m, ‘P(‘x(‘m)) and ‘x(‘m + 1) < ‘x(‘m). (See [34, section 3] for a definition of a well-founded relation, and
equivalent statements.)

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 26 of 203

6.9 Small languages

For alanguage ‘L, ‘L is small iff there exists some ZFC set ‘s (see [36, p.84,132-133]) and some model ‘m from ‘s such
that ‘L is a sub-language of ‘des(‘s).

7 NummSquared semantics

NummSquared semantics are now defined. The semantics are to be used for both reduction and truth. The portion
of the semantics used for reduction is computable, allowing reduction to be defined directly as a computable total
function. Defining reduction in this way automatically ensures termination.

NummSquared semantics are developed as follows:

Small function extensions, the core of NummSquared, are defined.

For coercion and computational reasons, the domain of a rule small function extension is represented by a
domain extension. A domain extension contains the same information as a type in type theory, but with a dif-
ferent purpose.

The domain extension irrelevance theorem: domain extensions contain no more information than their do-
mains.

Tagged small function extensions are obtained by augmenting (tagging) rule small function extensions with
domain extensions (tags).

The tag irrelevance theorem: because of the domain extension irrelevance theorem, tagging adds no informa-
tion.

NummSquared coercion is (loosely) a generalization to higher order functions of coercion (type conversion)
found in many programming languages. NummSquared coercion is defined by well-founded tango.

The coercion stability theorem: coercion does not make unnecessary changes.

Coercion is used to define tagged small function extensions over all tagged small function extensions, while
maintaining computability. This generalized definition of result is the basis for reduction.

The extensionality theorem characterizes equals on rule tagged small function extensions.

Large function extensions, the face of NummSquared, are defined. Truth of a tagged small function extension
or large function extension is defined.

Some computational large function extensions and combinations are given. Among them are Curry and recur-
sion.

Some non-computational large function extensions and combinations are given. Among them are are equals
and Hilbert.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 27 of 203

7.1 Small function extensions

Even though small function extensions never appear directly in NummSquared programs, they are the core of
NummSquared. (The word extension means an object of the semantics.)

A null small function extension is exactly the null small function extension, ‘Func.Sm.Ext.null. ‘Func.Sm.Ext.null
should be interpreted as the absence of relevant information, like the null pointer in many programming languages.
‘Func.Sm.Ext.null should not be interpreted as 0, false, undefined nor non-termination (since NummSquared reduc-
tion always terminates). Map theory includes a somewhat similar nil element, although nil is interpreted as true and
0 (see [16, p.15,40,43]).

A zero small function extension contains a null small function extension. (Containment means structural con-
tainment. For example, a record contains its fields. The purpose of the containment is to enable structural recursion
and induction.) Let ‘Func.Sm.Ext.zero be the zero small function extension containing ‘Func.Sm.Ext.null. For any
zero small function extension ‘x, then ‘x = ‘Func.Sm.Ext.zero. ‘Func.Sm.Ext.zero should be interpreted as false.

A one small function extension contains <‘n, ‘z> where ‘n is a null small function extension and ‘z is a zero
small function extension. Let ‘Func.Sm.Ext.one be the one small function extension containing <‘Func.Sm.Ext.null,
‘Func.Sm.Ext.zero>. For any one small function extension ‘x, then ‘x = ‘Func.Sm.Ext.one. ‘Func.Sm.Ext.one should
be interpreted as true.

A leaf small function extension is exactly one of the following:

¢ anull small function extension

* azero small function extension

* aone small function extension
For leaf small function extensions ‘x and ‘y, ‘x = ‘y iff exactly one of the following holds:
e ‘x = ‘Func.Sm.Ext.null and ‘y = ‘Func.Sm.Ext.null.

* ‘x = ‘Func.Sm.Ext.zero and ‘y = ‘Func.Sm.Ext.zero.

* ‘x = ‘Func.Sm.Ext.one and ‘y = ‘Func.Sm.Ext.one.

Small function extensions are defined inductively. Let ‘Func.Sm.Ext be the language of all small function exten-
sions.
A small function extension is exactly one of the following:

¢ asimple small function extension
¢ arule small function extension
A simple small function extension is exactly one of the following:
¢ aleaf small function extension
¢ a pair small function extension
A pair small function extension contains <‘n, ‘z, ‘o, ‘left, ‘right> where:
* ‘nis anull small function extension

¢ ‘zis azero small function extension

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 28 of 203

* ‘ois a one small function extension
¢ ‘left and ‘Tight are small function extensions

A rule small function extension contains a model ‘model to ‘Func.Sm.Ext such that ‘src(‘model) is a small sub-
language of ‘Func.Sm.Ext.

This concludes the inductive definition.

For a pair small function extension ‘p containing <‘n, ‘z, ‘o, ‘left, right>, the left and right of ‘p are ‘left and
‘right, respectively. For a pair small function extension ‘p, let ‘left(‘p) and ‘right(‘p) be the left and right of ‘p, respec-
tively. For pair small function extensions ‘p0 and ‘p1, ‘p0 = ‘p1 iff ‘left(‘p0) = ‘left(‘p1) and Tight(‘p0) = Tight(‘p1). For
small function extensions x0 and ‘x1, let {0, ‘x1} be the pair small function extension ‘p such that ‘left(‘p) = x0 and
‘right(‘p) = 1.

For a natural number ‘m = 2, and a small function extension ‘t, the property of ‘t being an ‘m tuple is defined by
recursion on ‘m:

e If ‘m = 2: ‘tis an ‘m tuple iff ‘t is a pair small function extension.
e If ‘m > 2: ‘tis an ‘m tuple iff ‘t is a pair small function extension and ‘left(‘t) is an ‘m - 1 tuple.

For a natural number ‘m > 2, and small function extensions ‘x(, X1, ..., X¢p 2, X -1, €t {%g, X1, .., X0,
Xqn-1} be the ‘m tuple {{{’xg, X1}, ..., X2} X1}

Let ‘Func.Sm.Ext.Null be the language of all null small function extensions.

For a small function extension ‘f, ‘fis a nuro iff ‘f = ‘Func.Sm.Ext.null or ‘f = ‘Func.Sm.Ext.zero.

Let ‘Func.Sm.Ext.Nuro be the language of all nuro small function extensions.

For a small function extension 1, ‘fis a Boolean iff ‘f = ‘Func.Sm.Ext.zero or ‘f = ‘Func.Sm.Ext.one.

Let ‘Func.Sm.Ext.Boo be the language of all Boolean small function extensions.

Let ‘Func.Sm.Ext.Leaf be the language of all leaf small function extensions.

For a small function extension ‘f, the property of ‘f being a tree is defined by recursion on ‘f:

o If ‘fis aleaf small function extension: ‘fis a tree.
 If fis a pair small function extension: fis a tree iff ‘left(‘f) and ‘right(‘f) are trees.
¢ If ‘fis a rule small function extension: ‘fis not a tree.

Let ‘Func.Sm.Ext.Tree be the language of all tree small function extensions.

7.2 Domain and specific result of a small function extension

For a small function extension ‘f, the domain of ‘f (a small sub-language of ‘Func.Sm.Ext), denoted by ‘dom(), is
given by one of the following mutually exclusive cases:

e ‘Func.Sm.Ext.Null if f = ‘Func.Sm.Ext.null

* ‘Func.Sm.Ext.Null if ‘f = ‘Func.Sm.Ext.zero

¢ ‘Func.Sm.Ext.Nuro if ‘f = ‘Func.Sm.Ext.one

e ‘Func.Sm.Ext.Leaf if ‘f is a pair small function extension

* ‘src(‘model) if ‘f is a rule small function extension containing ‘model

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 29 of 203

‘Func.Sm.Ext.null is a ‘dom(‘Func.Sm.Ext.null) program. Thus ‘Func.Sm.Ext.null is a program of its own domain.

For a nuro small function extension ‘%, ‘dom(‘x) = ‘Func.Sm.Ext.Null.

For a leaf small function extension ‘%, ‘dom(‘x) is a sub-language of ‘Func.Sm.Ext.Nuro.

For a tree small function extension ‘t, ‘dom(‘t) is a sub-language of ‘Func.Sm.Ext.Leaf.

For a small function extension ‘f, and a ‘dom(‘f) program ‘x, the specific result of ‘f at x, denoted by ‘f<x>, is
given by one of the following mutually exclusive cases:

» ‘xif fis aleaf small function extension

¢ ‘Func.Sm.Ext.null if ‘f is a pair small function extension and ‘x = ‘Func.Sm.Ext.null
o ‘left(‘f) if ‘fis a pair small function extension and ‘x = ‘Func.Sm.Ext.zero

e ‘right(‘f) if ‘f is a pair small function extension and ‘x = ‘Func.Sm.Ext.one

* ‘model(‘x) if ‘fis a rule small function extension containing ‘model

For a small function extension ‘f, the range of ‘f (a small sub-language of ‘Func.Sm.Ext), denoted by ‘ran(‘f), is the
language of all ‘f<‘x> such that xis a ‘dom(‘f) program.

‘ran(‘Func.Sm.Ext.null) = ‘Func.Sm.Ext.Null.

‘ran(‘Func.Sm.Ext.zero) = ‘Func.Sm.Ext.Null.

‘ran(‘Func.Sm.Ext.one) = ‘Func.Sm.Ext.Nuro.

For a leaf small function extension ‘%, ‘ran(‘x) = ‘dom(‘x).

For a pair small function extension ‘p, Tan(‘p) is the language whose only programs are ‘Func.Sm.Ext.null, ‘left(‘p)
and ‘right(‘p).

For a rule small function extension ‘T containing ‘model, Tan(‘r) = ‘des(‘model).

For a nuro small function extension ‘%, Tan(‘x) = ‘Func.Sm.Ext.Null.

For a leaf small function extension ‘%, ran(‘x) is a sub-language of ‘Func.Sm.Ext.Nuro.

For a tree small function extension ‘t, Tan(‘t) is a sub-language of ‘Func.Sm.Ext.Tree.

For a small function extension , the field of ‘f (a small sub-language of ‘Func.Sm.Ext), denoted by ‘field(‘f), is
‘union(‘dom(‘f), ‘ran(‘f)).

For a small function extension f # ‘Func.Sm.Ext.null, and a ‘field(‘f) program ‘%, ‘x is structurally smaller than ‘f.

For small function extensions ‘fand ‘g, ‘f = ‘g iff exactly one of the following holds:

e ‘f= Func.Sm.Ext.null and ‘g = ‘Func.Sm.Ext.null.

* ‘f = ‘Func.Sm.Ext.zero and ‘g = ‘Func.Sm.Ext.zero.

¢ ‘f= ‘Func.Sm.Ext.one and ‘g = ‘Func.Sm.Ext.one.

* ‘fand ‘g are pair small function extensions, and ‘left(‘f) = ‘left(‘g) and ‘right(‘f) = ‘right(‘g).

* ‘fand ‘g are rule small function extensions, and ‘dom(‘f) = ‘dom(‘g), and, for each ‘dom(‘f) program ‘%, ‘f<x> =
‘g<x>.

The small function extensions are illustrated in figure 1.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally

October 18, 2006 / 30 of 203

simple
leaf
air
hull (base case) pair p
null l null zero one
null<null>
_ p<null> p<zero> p<one>
= null .
zero = hull = left(p) = right(p)
null l
zero<null> rule f
= null
ohe X
null/ zero fases dom(f)
small
one<null> one<zero> (no larger
= null = zZero than a ZFC set)

Figure 1: Small function extensions

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 31 of 203

7.3 Rank of a small function extension

Some concepts from set theory are found useful at this point: ordinals; the well-founded relation < on ordinals; and
the smallest ordinal satisfying a given property (see [36, p.36,39,45-46]). The following definition of rank of a small
function extension is similar to the definition of rank of a set (see [36, p.79]).

For a small function extension , the rank of f (an ordinal), denoted by rank(‘f), is defined by recursion on ‘f:
‘rank(‘f) is 0 if ‘f = ‘Func.Sm.Ext.null or ‘field(‘f) is empty; and the smallest ordinal ‘a such that, for each ‘field(‘f) pro-
gram ‘), Tank(x) < ‘a otherwise.

For a sub-language ‘A of ‘Func.Sm.Ext, the rank of ‘A, denoted by rank(‘A), is 0 if ‘A is empty; and the smallest or-
dinal ‘a such that, for each ‘A program ‘%, rank(x) < ‘a otherwise.

7.4 Identity small function extensions

For a small sub-language ‘A of ‘Func.Sm.Ext, the identity small function extension on ‘A, denoted by
‘Func.Sm.Ext.identity(‘A), is the rule small function extension ‘f such that ‘dom(‘f) = ‘A and, for each ‘dom(‘f) pro-
gram ‘¥, f<‘x> = ‘x.

For a small function extension ‘f, the domain small function extension of f, denoted by ‘domFuncExt(‘f), is
‘Func.Sm.Ext.identity(‘dom(‘f)). (Pure Functions also uses identity functions to represent sets - see [26].)

For a small function extension ‘f, ‘domFuncExt(‘f) is a rule small function extension.

For a small function extension ‘f, ‘dom(‘domFuncExt(‘f)) = ‘dom(‘f).

Proof. ‘domFuncExt(‘f) = ‘Func.Sm.Ext.identity(‘dom(‘f)). ‘dom(‘Func.Sm.Ext.identity(‘dom(‘f))) = ‘dom(‘f). O
For small function extensions ‘f and ‘g, ‘domFuncExt(‘f) = ‘domFuncExt(‘g) iff ‘dom(f) = ‘dom(‘g).

Proof.

e If ‘dom(f) = ‘dom(‘g): ‘domFuncExt(‘f) = ‘Func.Sm.Ext.identity(‘dom(‘f)). ‘domFuncExt(‘g) =
‘Func.Sm.Ext.identity(‘dom(‘g)).

e If ‘domFuncExt(f) = ‘domFuncExt(‘g): ‘dom(‘domFuncExt(‘f)) = ‘dom(f). ‘dom(‘domFuncExt(‘g)) = ‘dom(‘g).
O

For rule small function extensions ‘f and ‘g, ‘f = ‘g iff ‘domFuncExt(‘f) = ‘domFuncExt(‘g) and, for each ‘dom(‘f)
program ‘X, T<x> = ‘g<x>.

For a small function extension f, ‘fis an identity iff, for each ‘dom(‘f) program ‘), f<x> =‘x.

For a small sub-language ‘A of ‘Func.Sm.Ext, ‘Func.Sm.Ext.identity(‘A) is an identity.

For a small function extension ‘f, ‘domFuncExt(‘f) is an identity.

For rule small function extensions ‘f and ‘g, if ‘f and ‘g are identities, then ‘f = ‘g iff ‘dom(‘f) = ‘dom(‘g).

Proof.
* Holdsif f="g.
e If ‘dom(f) = ‘dom(‘g): For each ‘dom(‘f) program ‘%, ‘f<x> = x = ‘g<x>. O
For a rule small function extension ‘f, if ‘f is an identity, then ‘f = ‘domFuncExt(‘f).

Proof. ‘dom(f) = ‘dom(‘domFuncExt(‘f)). ‘domFuncExt(‘f) is a rule small function extension and an identity. O
For a small function extension ‘f, ‘domFuncExt(‘domFuncExt(‘f)) = ‘domFuncExt(‘f).

Proof. ‘domFuncExt(‘f) is a rule small function extension and an identity. O

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 32 0of 203

7.5 Domain extensions

Often it is useful for the domain of a small function extension to be a function space. But membership of an arbi-
trary small function extension in a function space is not computable. Type theory partially solves the problem us-
ing compile-time type checking, although the requirement that type checking be computable imposes additional
constraints on the programmer. Another option is to require proofs at function calls, but this would contradict the
NummSquared goal of proofs as desired, but not required. Instead, NummSquared uses runtime coercion to restrict
a function to a function space. NummSquared coercion is (loosely) a generalization to higher order functions of co-
ercion (type conversion) found in many programming languages.

For coercion and computational reasons, the domain of a rule small function extension is represented by a do-
main extension. Not every small sub-language of ‘Func.Sm.Ext can be represented by a domain extension, so rep-
resentation of domains by domain extensions imposes a constraint on domains. A domain extension contains the
same information as a type in type theory, but with a different purpose. Types in type theory are used for compile-
time type checking, which is not present in NummSquared. (Full compile-time, or even runtime, type checking for
NummSquared would not be computable.) Domain extensions in NummSquared are available at runtime (as with
runtime type information in many programming languages), and are used for coercion. Domain extensions never
appear directly in NummSquared programs, but are available to the programmer as small function extensions (thus
maintaining functions as the only fundamental concept).

A constant domain extension is exactly one of the following:

¢ the null domain extension, ‘Dom.Ext.Null
¢ the nuro domain extension, ‘Dom.Ext.Nuro
¢ the leaf domain extension, ‘Dom.Ext.Leaf

¢ the tree domain extension, ‘Dom.Ext.Tree

‘Dom.Ext.Tree is somewhat related to the axiom of infinity in ZF (see [36, p.133]).

Domain extensions and domain extension families are defined mutually inductively. Let ‘Dom.Ext be the lan-
guage of all domain extensions.

A domain extension is exactly one of the following:

¢ a constant domain extension

* a combination domain extension
A combination domain extension is exactly one of the following:

¢ a dependent sum domain extension

¢ a dependent product domain extension

A dependent sum domain extension contains a domain extension family. Dependent sums in type theory (see
[8, section 3.1.4]) are conceptually similar. The axiom of unions in ZF (see [36, p.132]) is also somewhat related.

A dependent product domain extension contains a domain extension family. Dependent products in type the-
ory (see [8, sections 4.1.3, 4.2]) are conceptually similar. The axiom of powers in ZF (see [36, p.132]) is also somewhat
related.

A domain extension family contains <‘model, ‘tag> where:

* ‘model is a model to ‘Dom.Ext such that ‘src(‘model) is a small sub-language of ‘Func.Sm.Ext.
* ‘tagis a domain extension

This concludes the mutually inductive definition.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 33 of 203

7.6 Domain, domain extension and specific result of a domain extension family

For a domain extension family ‘F containing <‘model, ‘tag>, the domain of ‘F (a small sub-language of
‘Func.Sm.Ext), denoted by ‘dom(‘F), is ‘src(‘model).

For a domain extension family ‘F containing <‘model, ‘tag>, the domain extension of ‘E denoted by ‘domExt(‘F),
is ‘tag.

For a domain extension family ‘F containing <‘model, ‘tag>, and a ‘dom(‘F) program ‘%, the specific result of ‘F at
‘%, denoted by ‘F<‘x>, is ‘model(x).

For domain extension families ‘F and ‘G, ‘F = ‘G iff all the following hold:

e ‘dom(‘F) = ‘dom(‘G).
* For each ‘dom(‘F) program ‘x, ‘F<x> = ‘G<'x>.

¢ ‘domExt(‘F) = ‘domExt(‘G).

7.7 Domain, rank and validity of a domain extension

For a domain extension ‘A, the domain of ‘A (a small sub-language of ‘Func.Sm.Ext), denoted by ‘dom(‘A), is defined
by recursion on ‘A:

e ‘Func.Sm.Ext.Null if ‘A = ‘Dom.Ext.Null
¢ ‘Func.Sm.Ext.Nuro if ‘A = ‘Dom.Ext.Nuro
* ‘Func.Sm.Ext.Leaf if ‘A = ‘Dom.Ext.Leaf
* ‘Func.Sm.Ext.Tree if A = ‘Dom.Ext.Tree

 If ‘Ais a dependent sum domain extension containing ‘F: ‘dom(‘A) is the language of ‘Func.Sm.Ext.null and all
pair small function extensions ‘p such that ‘left(‘p) is a ‘dom(‘F) program, and ‘right(‘p) is a ‘dom(‘F<‘left(‘p)>)
program.

e If ‘A is a dependent product domain extension containing ‘F: ‘dom(‘A) is the language of ‘Func.Sm.Ext.null and
all rule small function extensions ‘f such that ‘dom(‘f) = ‘dom(‘F) and, for each ‘dom(‘f) program ‘%, f<x>is a
‘dom(‘F<‘x>) program.

For a domain extension ‘A, ‘Func.Sm.Ext.null is a ‘dom(‘A) program, and ‘dom(‘A) is non-empty. Empty domains
are excluded for reasons of coercion.

For a small sub-language ‘A of ‘Func.Sm.Ext, the null rule small function extension on ‘A, denoted by
‘Func.Sm.Ext.Rule.null(‘A), is the rule small function extension ‘f such that ‘dom(‘f) = ‘A and, for each ‘dom(‘f) pro-
gram ‘%, f<‘x> = ‘Func.Sm.Ext.null.

For a dependent product domain extension ‘A containing ‘F, ‘Func.Sm.Ext.Rule.null(‘dom(‘F)) is a ‘dom(‘A) pro-
gram.

Proof. Let ‘f = ‘Func.Sm.Ext.Rule.null(‘dom(‘F)). ‘dom(‘f) = ‘dom(‘F). For each ‘dom(‘f) program %, ‘f<x> =
‘Func.Sm.Ext.null is a ‘dom(‘F<‘x>) program. ‘fis a ‘dom(‘A) program. O
For a domain extension ‘A, the rank of ‘A, denoted by ‘rank(‘A), is ‘rank(‘dom(‘A)).
The definition of domain extensions and domain extension families is too broad because there is no constraint
between ‘model and ‘tag of a domain extension family containing <‘model, ‘tag>.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 34 of 203

For a domain extension ‘A or a domain extension family ‘E the property of ‘A or ‘F (respectively) being valid is de-
fined by mutual recursion on ‘A or ‘F (respectively).
For a domain extension ‘A, the property of ‘A being valid is given by one of the following mutually exclusive cases:

 If ‘Ais a constant domain extension: ‘A is valid.

* If ‘Ais a dependent sum domain extension containing ‘F: ‘A is valid iff ‘F is valid.

e If ‘Ais a dependent product domain extension containing ‘F: ‘A is valid iff ‘F is valid.
A domain extension family ‘F is valid iff all the following hold:

* For each ‘dom(‘F) program ‘x, ‘F<‘x> is valid.

¢ ‘domExt(‘F) is valid.

¢ ‘dom(‘domExt(‘F)) = ‘dom(‘F).

This concludes the mutually recursive definition.
For valid domain extension families ‘F and ‘G, if ‘domExt(‘F) = ‘domExt(‘G), then ‘dom(‘F) = ‘dom(‘G).

Proof. ‘dom(‘F) = ‘dom(‘domExt(‘F)). ‘dom(‘G) = ‘dom(‘domExt(‘G)). O
For valid domain extension families ‘F and ‘G, ‘F = ‘G iff ‘domExt(‘F) = ‘domExt(‘G) and, for each ‘dom(‘F) pro-
gram ‘%, F<'x> = ‘G<'x>.

Proof.
e Holds if ‘F=‘G.
e If ‘domExt(‘F) = ‘domExt(‘G) and, for each ‘dom(‘F) program ‘%, ‘F<‘x> = ‘G<x>: ‘dom(‘F) = ‘dom(‘G). O

Let ‘Func.Sm.Ext.Pair.null be {‘Func.Sm.Ext.null, ‘Func.Sm.Ext.null}.
For a valid dependent sum domain extension ‘A, ‘Func.Sm.Ext.Pair.null is a ‘dom(‘A) program.

Proof. Let ‘A contain ‘E ‘dom(‘F) = ‘dom(‘domExt(‘F)). ‘Func.Sm.Ext.null is a ‘dom(‘F) program. ‘Func.Sm.Ext.null is a
‘dom(‘F<‘Func.Sm.Ext.null>) program. O
7.8 Domain extension irrelevance theorem

Domain extensions are computationally useful. However, domain extensions contain no more information than
their domains - this domain extension irrelevance theorem strengthens the connection between NummSquared and
set theory, and is now proved.

For constant domain extensions ‘A and ‘B, if ‘dom(‘A) = ‘dom(‘B), then ‘A = ‘B.

Proof. By cases on ‘A and ‘B. O
For a constant domain extension ‘A and a valid dependent sum domain extension ‘B, ‘dom(A) # ‘dom(‘B).

Proof.
e If ‘A = ‘Dom.Ext.Null: ‘Func.Sm.Ext.Pair.null is a ‘dom(‘B) program, but not a ‘dom(‘A) program.

e If'A# ‘Dom.Ext.Null: ‘Func.Sm.Ext.zero is a ‘dom(‘A) program, but not a ‘dom(‘B) program. O

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 35 0f 203

For a constant domain extension ‘A and a dependent product domain extension ‘B, ‘dom(‘A) # ‘dom(‘B).

Proof. Let ‘B contain ‘E ‘Func.Sm.Ext.Rule.null(‘dom(‘F)) is a ‘dom(‘B) program, but not a ‘dom(‘A) program. O
For a constant domain extension ‘A and a valid combination domain extension ‘B, ‘dom(‘A) # ‘dom(‘B).
For a dependent sum domain extension ‘A and a dependent product domain extension ‘B, ‘dom(‘A) # ‘dom(‘B).

Proof. Let ‘B contain ‘E ‘Func.Sm.Ext.Rule.null(‘dom(‘F)) is a ‘dom(‘B) program, but not a ‘dom(‘A) program. O
For a dependent sum domain extension ‘A containing ‘E and a small function extension ‘I, ‘lis a ‘dom(‘F) program
iff there exists some small function extension ‘r such that {‘l, ‘r} is a ‘dom(‘A) program.

Proof.
* If there exists some small function extension ‘T such that {‘], r} is a ‘dom(‘A) program: ‘lis a ‘dom(‘F) program.
e If‘lisa ‘dom(‘F) program: {‘], ‘Func.Sm.Ext.null} is a ‘dom(‘A) program. O

For a dependent sum domain extension ‘A containing ‘E ‘rank(‘dom(‘F)) = ‘rank(‘A).
For a dependent sum domain extension ‘A containing ‘F a ‘dom(‘F) program ‘], and a small function extension ,
then ‘ris a ‘dom(‘F<‘1>) program iff {‘], ‘r} is a ‘dom(‘A) program.

Proof.
e If{], 1} is a ‘dom(‘A) program: T is a ‘dom(‘F<‘l>) program.
e If ‘ris a ‘dom(‘F<‘l>) program: {‘], r} is a ‘dom(‘A) program. O

For a dependent sum domain extension ‘A containing ‘F and a ‘dom(‘F) program ‘], ‘rank(‘F<‘I>) < ‘rank(‘A).
For dependent sum domain extensions ‘A containing ‘FA and ‘B containing ‘FB, if ‘dom(‘A) = ‘dom(‘B), then
‘dom(‘FA) = ‘dom(‘FB) and, for each ‘dom(‘FA) program ‘], ‘dom(‘FA<‘l>) = ‘dom(‘FB<‘1>).

Proof.

¢ For each small function extension ‘l: ‘lis a ‘dom(‘FA) program iff there exists some small function extension ‘r
such that {1, 1} is a ‘dom(‘A) program. ‘lis a ‘dom(‘FB) program iff there exists some small function extension ‘r
such that {1, 1} is a ‘dom(‘B) program. ‘lis a ‘dom(‘FA) program iff ‘1is a ‘dom(‘FB) program.

e ‘dom(‘FA) = ‘dom(‘FB).

* For each ‘dom(‘FA) program ‘1, and each small function extension T: Tis a ‘dom(‘FA<‘]>) program iff {‘], ‘r} isa
‘dom(‘A) program. ‘ris a ‘dom(‘FB<‘]>) program iff {‘], ‘r} is a ‘dom(‘B) program. ‘r is a ‘dom(‘FA<‘]>) program
iff Tis a ‘dom(‘FB<‘l>) program.

* For each ‘dom(‘FA) program ‘1, ‘dom(‘FA<‘l>) = ‘dom(‘FB<‘]>). O

For a dependent product domain extension ‘A containing ‘E and a small function extension ‘x, x is a ‘dom(‘F) pro-
gram iff there exists some rule small function extension ‘f such that ‘fis a ‘dom(‘A) program and ‘x is a ‘dom(‘f) pro-
gram.

Proof.

* If there exists some rule small function extension ‘f such that ‘fis a ‘dom(‘A) program and ‘x is a ‘dom(‘f) pro-
gram: ‘dom(‘f) = ‘dom(‘F). xis a ‘dom(‘F) program.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 36 of 203

e If‘xis a ‘dom(‘F) program: Let ‘f = ‘Func.Sm.Ext.Rule.null(‘dom(‘F)). fis a rule small function extension and a
‘dom(‘A) program. ‘dom(‘f) = ‘dom(‘F). xis a ‘dom(‘f) program. O

For a dependent product domain extension ‘A containing ‘E ‘rank(‘dom(‘F)) = ‘rank(‘A).

For a dependent product domain extension ‘A containing ‘E a ‘dom(‘F) program ‘%, and a small function extension
‘y, then ‘yis a ‘dom(‘F<‘x>) program iff there exists some rule small function extension ‘f such that fis a ‘dom(‘A)
program and f<‘x>=‘y.

Proof.

e If there exists some rule small function extension ‘f such that fis a ‘dom(‘A) program and f<‘x> =‘y: ‘yisa
‘dom(‘F<‘x>) program.

e If‘yisa ‘dom(‘F<‘x>) program: Let ‘f be the rule small function extension such that ‘dom(‘f) = ‘dom(‘F) and,
for each ‘dom(‘f) program ‘z, ‘f<‘z> = ‘y if ‘z = x; and ‘Func.Sm.Ext.null otherwise. f<‘x> = ‘y. fis a ‘dom(‘A)
program. O

For a dependent product domain extension ‘A containing ‘F and a ‘dom(‘F) program ‘%, ‘rank(‘F<‘x>) < ‘rank(‘A).
For dependent product domain extensions ‘A containing ‘FA and ‘B containing ‘FB, if ‘dom(‘A) = ‘dom(‘B), then
‘dom(‘FA) = ‘dom(‘FB) and, for each ‘dom(‘FA) program ‘%, ‘dom(‘FA<‘x>) = ‘dom(‘FB<‘x>).

Proof.

* For each small function extension x: x is a ‘dom(‘FA) program iff there exists some rule small function exten-
sion ‘f such that fis a ‘dom(‘A) program and ‘x is a ‘dom(‘f) program. ‘xis a ‘dom(‘FB) program iff there exists
some rule small function extension ‘f such that ‘fis a ‘dom(‘B) program and ‘x is a ‘dom(‘f) program. xis a
‘dom(‘FA) program iff ‘x is a ‘dom(‘FB) program.

e ‘dom(‘FA) = ‘dom(‘FB).

* For each ‘dom(‘FA) program ‘x, and each small function extension ‘y: ‘y is a ‘dom(‘FA<‘x>) program iff
there exists some rule small function extension ‘f such that ‘fis a ‘dom(‘A) program and ‘f<x>="‘y. ‘yisa
‘dom(‘FB<‘x>) program iff there exists some rule small function extension ‘f such that ‘fis a ‘dom(‘B) and
f<'x>=y. ‘yis a ‘dom(‘FA<‘x>) program iff ‘y is a ‘dom(‘FB<‘x>) program.

* For each ‘dom(‘FA) program ‘), ‘dom(‘FA<‘x>) = ‘dom(‘FB<‘x>). O

The domain extension irrelevance theorem: For valid domain extensions ‘A and ‘B, if ‘dom(A) = ‘dom(‘B), then
‘A="B.

Proof.
* Byinduction on A.
¢ Holds if ‘A and ‘B are constant domain extensions.

¢ If ‘A is a constant domain extension and ‘B is a combination domain extension, or vice versa: ‘dom(‘A) #
‘dom(‘B), a contradiction.

e If ‘A is a dependent sum domain extension and ‘B is a dependent product domain extension, or vice versa:
‘dom(‘A) # ‘dom(‘B), a contradiction.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 37 of 203

¢ If ‘A and ‘B are dependent sum domain extensions: Let ‘A contain ‘FA. Let ‘B contain ‘FB. ‘dom(‘FA) = ‘dom(‘FB)
and ‘dom(‘domExt(‘FA)) = ‘dom(‘domExt(‘FB)), and ‘domExt(‘FA) = ‘domExt(‘FB) (by inductive hypothesis). For
each ‘dom(‘FA) program ‘], ‘dom(‘FA<‘l>) = ‘dom(‘FB<‘l>), and ‘FA<‘]> = ‘FB<‘]> (by inductive hypothesis).
‘FA = ‘FB.

* If ‘A and ‘B are dependent product domain extensions: Let ‘A contain ‘FA. Let ‘B contain ‘FB. ‘dom(‘FA) =
‘dom(‘FB) and ‘dom(‘domExt(‘FA)) = ‘dom(‘domExt(‘FB)), and ‘domExt(‘FA) = ‘domExt(‘FB) (by inductive hy-
pothesis). For each ‘dom(‘FA) program ‘%, ‘dom(‘FA<‘x>) = ‘dom(‘FB<‘x>), and ‘FA<‘x> = ‘FB<‘x> (by induc-
tive hypothesis). ‘FA = ‘FB. O

For valid domain extension families ‘F and ‘G, ‘dom(‘F) = ‘dom(‘G) iff ‘domExt(‘F) = ‘domExt(‘G).
Proof.
¢ Holds if ‘domExt(‘F) = ‘domExt(‘G).

e If ‘dom(‘F) = ‘dom(‘G): ‘dom(‘domExt(‘F)) = ‘dom(‘domExt(‘G)). ‘domExt(‘F) = ‘domExt(‘G) (by domain exten-
sion irrelevance theorem). O

For valid domain extension families ‘F and ‘G, ‘F = ‘G iff ‘dom(‘F) = ‘dom(‘G) and, for each ‘dom(‘F) program ‘x,
F<x> = ‘Ggx>.

Proof.
* Holds if ‘F =‘G.

e If ‘dom(‘F) = ‘dom(‘G) and, for each ‘dom(‘F) program ‘%, ‘F<‘x> = ‘G<x>: ‘domExt(‘F) = ‘domExt(‘G). O

7.9 Domain extension inference

For a valid domain extension ‘A, and a ‘dom(‘A) program , it is possible to infer certain type information about ‘f.
For a simple small function extension ‘f, the domain extension of f, denoted by ‘domExt(‘f), is given by one of the
following mutually exclusive cases:

¢ ‘Dom.Ext.Null if ‘f = ‘Func.Sm.Ext.null

e ‘Dom.Ext.Null if ‘f = ‘Func.Sm.Ext.zero

* ‘Dom.Ext.Nuro if ‘f = ‘Func.Sm.Ext.one

e ‘Dom.Ext.Leaf if ‘f is a pair small function extension

For a simple small function extension ‘f, ‘domExt(‘f) is valid.
For a simple small function extension ‘f, ‘dom(‘domExt(‘f)) = ‘dom(‘f).

Proof. By cases on ‘f. O
For a domain extension ‘A, and a rule small function extension , if ‘fis a ‘dom(‘A) program, then ‘A is a dependent
product domain extension.
For a domain extension ‘A, and a ‘dom(‘A) program ‘f, the inferred domain extension in ‘A of f, denoted by ‘infer-
DomExt(‘A, f), is given by one of the following mutually exclusive cases:

* ‘domExt(f) if ‘fis a simple small function extension

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 38 0of 203

¢ ‘domExt(‘F) if ‘fis a rule small function extension, and ‘A is the dependent product domain extension contain-
ing ‘F

For a valid domain extension ‘A, and a ‘dom(‘A) program ‘f, ‘inferDomExt(‘A, f) is valid.
For a valid domain extension ‘A, and a ‘dom(‘A) program f, ‘dom(‘inferDomExt(‘A, f)) = ‘dom(‘f).

Proof.
¢ If fis a simple small function extension: ‘inferDomExt(‘A, ‘f) = ‘domExt(‘f). ‘dom(‘domExt(‘f)) = ‘dom(‘f).

 If fis a rule small function extension, and ‘A is the dependent product domain extension containing ‘F: ‘infer-
DomExt(A, f) = ‘domExt(‘F). ‘dom(‘domExt(‘F)) = ‘dom(‘F). ‘dom(‘f) = ‘dom(‘F). O

For a domain extension ‘A, and a ‘dom(‘A) program ‘f, and a ‘dom(‘f) program ‘x, the inferred domain extension
in ‘A of ‘f at ’x, denoted by ‘inferDomExt(‘A, f, %), is given by one of the following mutually exclusive cases:

* ‘Dom.Ext.Tree if ‘A is a constant domain extension
* ‘Dom.Ext.Null if ‘A is a dependent sum domain extension, and ‘f = ‘Func.Sm.Ext.null

e ‘Dom.Ext.Null if ‘A is a dependent sum domain extension, ‘f is a pair small function extension, and x =
‘Func.Sm.Ext.null

* ‘domExt(‘F) if ‘A is a dependent sum domain extension containing ‘E ‘f is a pair small function extension, and
‘x = ‘Func.Sm.Ext.zero

* ‘F<'left(‘f)> if ‘A is a dependent sum domain extension containing ‘E ‘fis a pair small function extension, and
‘x = ‘Func.Sm.Ext.one. Note that ‘left(‘f) is a ‘dom(‘F) program.

e ‘Dom.Ext.Null if ‘A is a dependent product domain extension, and ‘f = ‘Func.Sm.Ext.null

* ‘F<x> if ‘Ais a dependent product domain extension containing ‘E and ‘fis a rule small function extension.
Note that ‘dom(‘f) = ‘dom(‘F).

For a valid domain extension ‘A, and a ‘dom(‘A) program ‘f, and a ‘dom(‘f) program ‘%, ‘inferDomExt(‘A, f, x) is
valid.
For a constant domain extension ‘A, and a ‘dom(‘A) program f, ‘fis a tree.

Proof. By cases on ‘A. O
For a valid domain extension ‘A, and a ‘dom(‘A) program ‘f, and a ‘dom(‘f) program ‘%, ‘f<x>is a
‘dom(‘inferDomExt(‘A, f, x)) program.

Proof.

e If ‘Ais a constant domain extension: ‘fis a tree. ‘ran(‘f) is a sub-language of ‘Func.Sm.Ext.Tree. ‘f<‘x> is a tree.
‘dom(‘inferDomExt(‘A, f, X)) = ‘Func.Sm.Ext.Tree.

e If ‘A is a dependent sum domain extension, and ‘f = ‘Func.Sm.Ext.null: f<‘x> = ‘Func.Sm.Ext.null.
‘dom(‘inferDomExt(‘A, ‘f, %)) = ‘Func.Sm.Ext.Null.

¢ If ‘Ais a dependent sum domain extension, ‘fis a pair small function extension, and x = Func.Sm.Ext.null:
f<‘x> = ‘Func.Sm.Ext.null. ‘dom(‘inferDomExt(‘A, f, ‘X)) = ‘Func.Sm.Ext.Null.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 39 of 203

» If ‘A is a dependent sum domain extension containing ‘E ‘f is a pair small function extension, and x =
Func.Sm.Ext.zero: ‘f<‘x> = ‘left(‘f) is a ‘dom(‘F) program. ‘dom(‘inferDomExt(‘A, 1, x)) = ‘dom(‘domExt(‘F))
=‘dom(‘F).

* If ‘Ais a dependent sum domain extension containing ‘E ‘fis a pair small function extension, and x
= Func.Sm.Ext.one: f<x> = ‘right(f) is a ‘dom(‘F<‘left(‘f)>) program. ‘dom(‘inferDomExt(‘A, f, %)) =
‘dom(‘F<‘left(‘f)>).

* If ‘Ais a dependent product domain extension, and ‘f = ‘Func.Sm.Ext.null: ‘f<‘x> = ‘Func.Sm.Ext.null.
‘dom(‘inferDomExt(A, f, X)) = ‘Func.Sm.Ext.Null.

 If ‘Ais a dependent product domain extension containing ‘E and ‘fis a rule small function extension: f<‘x> is

a ‘dom(‘F<‘x>) program. ‘dom(‘inferDomExt(‘A, f, x)) = ‘dom(‘F<‘x>). O

7.10 Tagged small function extensions

Tagged small function extensions are obtained by augmenting (tagging) rule small function extensions with domain
extensions (tags). Not every rule small function extension can be tagged, so tagging imposes a constraint on small
function extensions.

Tagged small function extensions are defined inductively. Let ‘Func.Sm.Ext.Tagged be the language of all tagged
small function extensions.

A tagged small function extension is exactly one of the following:

» asimple tagged small function extension
* arule tagged small function extension
A simple tagged small function extension is exactly one of the following:
¢ aleaf small function extension
* a pair tagged small function extension
A pair tagged small function extension contains <‘n, ‘z, ‘o, ‘left, Tight> where:
* ‘nis anull small function extension
* ‘zisazero small function extension
* ‘ois a one small function extension
* ‘left and ‘right are tagged small function extensions
A rule tagged small function extension contains <‘model, ‘tag> where:
* ‘model is a model to ‘Func.Sm.Ext.Tagged such that ‘src(‘model) is a small sub-language of ‘Func.Sm.Ext.

* ‘tagis a valid domain extension such that ‘dom(‘tag) = ‘src(‘model). Note that the programs of ‘src(‘model) are
small function extensions, not tagged small function extensions.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 40 of 203

This concludes the inductive definition.

For a pair tagged small function extension ‘p containing <‘n, ‘z, ‘o, ‘left, ‘right>, the left and right of ‘p are ‘left
and Tight, respectively. For a pair tagged small function extension ‘p, let ‘left(‘p) and ‘right(‘p) be the left and right of
‘p, respectively. For pair tagged small function extensions ‘p0 and ‘p1, ‘p0 = ‘p1 iff ‘left(‘p0) = ‘left(‘p1) and ‘right(‘p0)
= right(‘p1). For tagged small function extensions x0 and k1, let {’x0, x1} be the pair tagged small function exten-
sion ‘p such that ‘left(‘p) = x0 and ‘right(‘p) = x1.

For a natural number ‘m = 2, and a tagged small function extension ‘t, the property of ‘t being an ‘m tuple is de-
fined by recursion on ‘m:

e If ‘m =2: ‘tis an ‘m tuple iff ‘t is a pair tagged small function extension.
e If ‘m > 2: ‘tis an ‘m tuple iff ‘t is a pair tagged small function extension and ‘left(‘t) is an ‘m - 1 tuple.
For a natural number ‘m > 2, and tagged small function extensions ‘xg, X1, ..., Xq, .2, Xq, .1, let {xq, X1, ...,

Xm-2) Xp-1} be the ‘m tuple {{{’xg, X1}, ..., ‘x«m_z}, Xm-1}

7.11 Untagged, tag irrelevance theorem, tagged and taggable

For a tagged small function extension ‘f, the untagged of ‘f (a small function extension), denoted by ‘untag(‘f), is de-
fined by recursion on ‘f:

e ‘fif fis a leaf small function extension
e {‘untag(‘left(f)), ‘untag(‘right(‘f))} if fis a pair tagged small function extension

e If fis a rule tagged small function extension ‘f containing <‘model, ‘tag>: ‘untag(‘f) is the rule small function
extension ‘untagF such that ‘dom(‘untagF) = ‘src(‘model) and, for each ‘dom(‘untagF) program ‘x, ‘untagF< ‘x>
= ‘untag(‘model(‘x)).

For a tagged small function extension ‘f, all the following hold:

e ‘untag(‘f) is a leaf small function extension iff ‘f is a leaf small function extension

* ‘untag(‘f) is a pair small function extension iff ‘f is a pair tagged small function extension

* ‘untag(‘f) is a rule small function extension iff ‘f is a rule tagged small function extension

* ‘untag(‘f) is a simple small function extension iff ‘f is a simple tagged small function extension
e ‘untag(‘f) = ‘Func.Sm.Ext.null iff ‘f = ‘Func.Sm.Ext.null

e ‘untag(‘f) = ‘Func.Sm.Ext.zero iff ‘f = ‘Func.Sm.Ext.zero

e ‘untag(‘f) = ‘Func.Sm.Ext.one iff ‘f = ‘Func.Sm.Ext.one

* ‘untag(‘f) is a nuro iff fis a nuro

e ‘untag(‘f) is a Boolean iff ‘fis a Boolean

Because of the domain extension irrelevance theorem, tagging adds no information. The tag irrelevance theo-
rem: For tagged small function extensions ‘f and ‘g, if ‘untag(‘f) = ‘untag(‘g), then ‘f=‘g.

Proof.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 41 of 203

By induction on ‘f.

If ‘f and ‘g are leaf small function extensions: ‘untag(‘f) = ‘f. ‘untag(‘g) = ‘g.

If ‘f and ‘g are pair tagged small function extensions: ‘untag(‘f) = {‘'untag(‘left(‘f)), ‘untag(‘right(f))}. ‘untag(‘g)
= {‘untag(‘left(‘g)), untag(‘right(‘g))}. ‘untag(‘left(‘f)) = ‘untag(‘left(‘g)). ‘untag(‘right(‘f)) = ‘untag(‘right(‘g)).
‘left(‘f) = ‘left(‘g) (by inductive hypothesis). right(‘f) = ‘right(‘g) (by inductive hypothesis).

If ‘fand ‘g are rule tagged small function extensions: Let ‘f contain <‘modelF, ‘tagF>. Let ‘g contain <‘modelG,
‘tagG>. ‘untag(‘f) is the rule small function extension ‘untagF such that ‘dom(‘untagF) = ‘src(‘modelF) and, for
each ‘dom(‘untagF) program ‘%, ‘untagF<‘x> = ‘untag(‘modelF(‘x)). ‘untag(‘g) is the rule small function exten-
sion ‘untagG such that ‘dom(‘untagG) = ‘src(‘modelG) and, for each ‘dom(‘untagG) program ‘%, ‘untagG<‘x>

= ‘untag(‘modelG(x)). ‘untagF = ‘untagG. ‘dom(‘untagF) = ‘dom(‘untagG). ‘src(‘modelF) = ‘src(‘modelG). For
each ‘src(‘modelF) program ‘%, ‘untagF<‘x> = ‘untagG<‘x>, ‘untag(‘modelF(‘x)) = ‘untag(‘modelG(‘x)), and
‘modelF(x) = ‘modelG(‘x) (by inductive hypothesis). ‘modelF = ‘modelG. ‘dom(‘tagF) = ‘dom(‘tagG). ‘tagF =
‘tagG (by domain extension irrelevance theorem). O

For a tagged small function extension f, ‘fis a tree iff ‘untag(‘f) is a tree.

Let ‘Func.Sm.Ext.Tagged.Tree be the language of all tree tagged small function extensions.

For a tagged small function extension ‘f, the property of ‘f being a tree is given by one of the following mutually
exclusive cases:

e If fis a leaf small function extension: ‘fis a tree.
 If fis a pair tagged small function extension: ‘fis a tree iff ‘left(‘f) and ‘right(‘f) are trees.
» If fis a rule tagged small function extension: ‘fis not a tree.
Proof.
 If fis a leaf small function extension: ‘untag(‘f) = ‘fis a tree.

 If fis a pair tagged small function extension: ‘untag(‘f) = {‘untag(‘left(‘f)), ‘untag(‘right(‘f))}. Let ‘untagF = ‘un-
tag(‘f). ‘untagkF is a tree iff ‘left(‘untagF) and ‘Tight(‘untagF) are trees.

 If ‘fis a rule tagged small function extension: ‘untag(‘f) is a rule small function extension. ‘untag(‘f) is not a
tree. O

For a valid domain extension ‘A, and a small function extension ‘f such that ‘fis a ‘dom(‘A) program, the tagged in
‘A of ‘f (a tagged small function extension), denoted by ‘tagged(‘A,), is defined by recursion on ‘f:

o ‘fif fis a leaf small function extension

* {‘tagged(‘inferDomExt(‘A, f, ‘Func.Sm.Ext.zero), ‘left(‘f)), ‘tagged(‘inferDomExt(‘A, f, ‘Func.Sm.Ext.one),
‘right(‘f)) } if fis a pair small function extension. Note that ‘left(‘f) is a ‘dom(‘inferDomExt(‘A, 1,
‘Func.Sm.Ext.zero)) program, and ‘right(‘f) is a ‘dom(‘inferDomExt(‘A, f, ‘Func.Sm.Ext.one)) program.

 If ‘fis a rule small function extension: ‘tagged(‘A, ‘f) is the rule tagged small function extension containing
<‘modelTagged, ‘tag> where:

— ‘src(‘modelTagged) = ‘dom(f).

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 42 of 203

— For each ‘src(‘modelTagged) program ‘%, ‘modelTagged(‘x) = ‘tagged(‘inferDomExt(A, 1, ‘x), f<‘x>). Note
that f<x> is a ‘dom(‘inferDomExt(‘A, f, X)) program.

- ‘tag = ‘inferDomExt(‘A, f). Note that ‘dom(‘inferDomExt(‘A, f)) = ‘dom(‘f) and ‘dom(‘tag) =
‘src(‘modelTagged).

For a valid domain extension ‘A, and a small function extension ‘f such that ‘fis a ‘dom(A) program, ‘un-
tag(‘tagged(A, 1)) = 1.

Proof.
* Byinduction on 1.
e If fis a leaf small function extension: ‘tagged(‘A, f) = f. ‘untag(‘f) = f.

e If fis a pair small function extension: ‘tagged(‘A, f) = { ‘tagged(‘inferDomExt(‘A, ‘f, ‘Func.Sm.Ext.zero), ‘left(‘f)),
‘tagged(‘inferDomExt(‘A, ‘f, ‘Func.Sm.Ext.one), Tight(‘f)) }. Let ‘taggedF = ‘tagged(‘A, ‘f). ‘untag(‘taggedF)
= {‘untag(‘left(‘taggedF)), ‘untag(‘right(‘taggedF))}. Let ‘untagF = ‘untag(‘taggedF). ‘left(‘untagF) = ‘un-
tag(‘left(‘taggedF)) = ‘left(‘f) (by inductive hypothesis). ‘right(‘untagF) = ‘untag(‘right(‘taggedF)) = ‘right(‘f) (by
inductive hypothesis). ‘untagF = ‘1.

 If fis a rule small function extension: ‘tagged(‘A, ‘f) is the rule tagged small function extension containing
<‘modelTagged, ‘tag> where:

- ‘src(‘modelTagged) = ‘dom(f).
— For each ‘src(‘modelTagged) program ‘x, ‘modelTagged(‘x) = ‘tagged(‘inferDomExt(‘A, f, x), ‘f<‘x>).
- ‘tag = ‘inferDomExt(‘A, f).

‘untag(‘tagged(‘A, f)) the rule small function extension ‘untagF such that ‘dom(‘untagF) = ‘src(‘modelTagged)
and, for each ‘dom(‘untagF) program ‘%, ‘untagF<‘x> = ‘untag(‘modelTagged(‘x)). ‘dom(‘untagF) = ‘dom(‘f).
For each ‘dom(‘f) program ‘%, ‘untagF<‘x> = ‘untag(‘tagged(‘inferDomExt(‘A, f,), f<x>)), and ‘untagF<‘x> =
‘f<x> (by inductive hypothesis). ‘untagF = ‘f. O

For a valid domain extension ‘A, and a tagged small function extension ‘f such that ‘untag(‘f) is a ‘dom(‘A) pro-
gram, ‘tagged(‘A, ‘untag(‘f)) = .

Proof. ‘untag(‘tagged(A, ‘untag(‘f))) = ‘untag(‘f). ‘tagged(‘A, ‘untag(‘f)) = ‘f (by tag irrelevance theorem). O
For valid domain extensions ‘A and ‘B, and a small function extension ‘f such that ‘fis a ‘dom(‘A) program and a
‘dom(‘B) program, ‘tagged(‘A, f) = ‘tagged(‘B,).

Proof. ‘untag(‘tagged(‘A, 1)) = f=‘untag(‘tagged(‘B, f)). ‘tagged(‘A, ‘f) = ‘tagged(‘B, f) (by tag irrelevance theorem).
O
For a small function extension f, ‘fis taggable iff there exists some tagged small function extension ‘g such that
‘untag(‘g) = .
For a small function extension 1, ‘fis untaggable iff ‘f is not taggable.
For a small function extension 1, if there exists some valid domain extension ‘A such that fis a ‘dom(‘A) program,
then ‘fis taggable.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 43 of 203

Proof. ‘untag(‘tagged(A, 1)) =1 O
For a small function extension 1, if ‘f is untaggable, then, for each valid domain extension ‘A, ‘fis not a ‘dom(‘A)
program.

For valid domain extensions ‘A and ‘B, ‘A = ‘B iff, for each tagged small function extension ‘f, ‘untag(‘f) is a
‘dom(‘A) program iff ‘untag(‘f) is a ‘dom(‘B) program.

Proof.
* Holdsif A="B.

* Iffor each tagged small function extension ‘1, ‘untag(‘f) is a ‘dom(‘A) program iff ‘untag(‘f) is a ‘dom(‘B) pro-
gram:

— For each small function extension ‘g:

+ If ‘g is taggable: Let ‘f be a tagged small function extension such that ‘untag(‘f) = ‘g. ‘gis a ‘dom(‘A)
program iff ‘g is a ‘dom(‘B) program.
+ If ‘g is untaggable: ‘g is neither a ‘dom(‘A) program nor a ‘dom(‘B) program.

- ‘dom(A) = ‘dom(‘B). ‘A = ‘B (by domain extension irrelevance theorem). O

For a valid domain extension family ‘E and a ‘dom(‘F) program ‘, the tagged by ‘F of ‘x, denoted by ‘tagged(‘E %),
is ‘tagged (‘domExt(‘F), ‘x). Note that ‘dom(‘domExt(‘F)) = ‘dom(‘F).
For a valid domain extension family ‘E and a ‘dom(‘F) program ‘x, ‘untag(‘tagged(‘E X)) = ‘x.

Proof. ‘untag(‘tagged(‘E %)) = ‘untag(‘tagged(‘domExt(‘F), ‘x)). O
For a valid domain extension family ‘E and a tagged small function extension ‘), if ‘untag(‘x) is a ‘dom(‘F) pro-
gram, ‘tagged(‘E ‘untag(‘x)) = x.

Proof. ‘dom(‘domExt(‘F)) = ‘dom(‘F). ‘tagged(‘F ‘untag(‘x)) = ‘tagged(‘domExt(‘F), ‘untag(‘x)). O
For valid domain extension families ‘F and ‘G, and a small function extension ‘x such that xis a ‘dom(‘F) pro-
gram and a ‘dom(‘G) program, ‘tagged(‘E ‘x) = ‘tagged(‘G, %).

Proof. ‘tagged(‘E x) = ‘tagged(‘domExt(‘F), x) = ‘tagged (‘domExt(‘G), ‘x) = ‘tagged(‘G, x). O

7.12 Domain, domain extension, specific result and rank of a tagged small function extension

For a tagged small function extension ‘f, the domain of ‘f (a small sub-language of ‘Func.Sm.Ext), denoted by
‘dom(f), is ‘dom(‘untag(‘f)).
For a tagged small function extension f, ‘dom(‘f) is given by one of the following mutually exclusive cases:

e ‘Func.Sm.Ext.Null if f = ‘Func.Sm.Ext.null

* ‘Func.Sm.Ext.Null if ‘f = ‘Func.Sm.Ext.zero

¢ ‘Func.Sm.Ext.Nuro if ‘f = ‘Func.Sm.Ext.one

* ‘Func.Sm.Ext.Leaf if ‘f is a pair tagged small function extension

* ‘src(‘model) if ‘fis a rule tagged small function extension containing <‘model, ‘tag>

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 44 of 203

For a tree tagged small function extension ‘t, ‘dom(‘t) is a sub-language of ‘Func.Sm.Ext.Leaf.
For a tagged small function extension ‘f, the domain extension of ‘f, denoted by ‘domExt(‘f), is given by one of the
following mutually exclusive cases:

e ‘domExt(‘untag(‘f)) if ‘fis a simple tagged small function extension
e ‘tagif fis a rule tagged small function extension containing <‘model, ‘tag>

For a tagged small function extension ‘f, ‘domExt(‘f) is valid.
For a tagged small function extension f, ‘dom(‘domExt(‘f)) = ‘dom(‘f).

Proof.

* If ‘fis a simple tagged small function extension: ‘dom(‘domExt(‘f)) = ‘dom(‘domExt(‘untag(‘f))) =
‘dom(‘untag(‘f)) = ‘dom(‘f).

e If fis a rule tagged small function extension containing <‘model, ‘tag>: ‘domExt(‘f) = ‘tag. ‘dom(‘tag) =
‘src(‘model). ‘dom(‘f) = ‘src(‘model). O

For a tagged small function extension ‘f, and a ‘dom(‘f) program ‘%, the tagged by ‘f of ‘x, denoted by ‘tagged(‘f, x),
is ‘tagged(‘domExt(‘f), x). Note that ‘dom(‘domExt(‘f)) = ‘dom(‘f).
For a tagged small function extension ‘f, and a ‘dom(‘f) program ‘x, ‘untag(‘tagged(f, x)) = x.

Proof. ‘untag(‘tagged(f, x)) = ‘untag(‘tagged(‘domExt(‘f), x)). O
For tagged small function extensions ‘f and ‘%, if ‘untag(‘x) is a ‘dom(‘f) program, ‘tagged(‘f, ‘untag(‘x)) = ‘x.

Proof. ‘tagged(‘f, ‘untag(‘x)) = ‘tagged(‘domExt(‘f), ‘untag(‘x)). O
For tagged small function extensions ‘f and ‘g, and a small function extension ‘x such that xis a ‘dom(‘f) program
and a ‘dom(‘g) program, ‘tagged(‘f, x) = ‘tagged(‘g, x).

Proof. ‘tagged(f, ‘x) = ‘tagged(‘domExt(‘f), x) = ‘tagged(‘domExt(‘g), x) = ‘tagged(‘g, ‘x). O
For a tagged small function extension ‘f, ‘Func.Sm.Ext.null is a ‘dom(‘f) program, and ‘dom(‘f) is non-empty.

Proof. ‘Func.Sm.Ext.nullis a ‘dom(‘domExt(‘f)) = ‘dom(‘f) program. O
For tagged small function extensions ‘f and ‘g, ‘domExt(‘f) = ‘domExt(‘g) iff ‘dom(‘f) = ‘dom(‘g).

Proof.
e ‘dom(f) = ‘dom(‘domExt(‘f)). ‘dom(‘g) = ‘dom(‘domExt(‘g)).
* Holds if ‘domExt(‘f) = ‘domExt(‘g).

e If ‘dom(f) = ‘dom(‘g): ‘dom(‘domExt(‘f)) = ‘dom(‘domExt(‘g)). ‘domExt(‘f) = ‘domExt(‘g) (by domain extension
irrelevance theorem). O

For tagged small function extensions ‘f and ‘g, ‘domExt(‘f) = ‘domExt(‘g) iff, for each tagged small function exten-
sion ‘%, ‘untag(‘x) is a ‘dom(‘f) program iff ‘untag(‘x) is a ‘dom(‘g) program.

For tagged small function extensions ‘f and ‘g, ‘dom(‘f) = ‘dom(‘g) iff, for each tagged small function extension ‘%,
‘untag(‘x) is a ‘dom(‘f) program iff ‘untag(‘x) is a ‘dom(‘g) program.

For a tagged small function extension ‘f, and a ‘dom(‘f) program ‘x, the specific result of ‘f at ‘x, denoted by f<‘x>,
is given by one of the following mutually exclusive cases:

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 45 of 203

» ‘xif fis aleaf small function extension

* ‘Func.Sm.Ext.null if ‘f is a pair tagged small function extension and ‘x = ‘Func.Sm.Ext.null
o ‘left(‘f) if fis a pair tagged small function extension and ‘x = ‘Func.Sm.Ext.zero

* ‘right(‘f) if ‘f is a pair tagged small function extension and x = ‘Func.Sm.Ext.one

* ‘model(x) if ‘fis a rule tagged small function extension containing <‘model, ‘tag>

For a tagged small function extension ‘f, the range of ‘f (a small sub-language of ‘Func.Sm.Ext.Tagged), denoted
by ‘ran(‘f), is the language of all ‘f<‘x> such that x is a ‘dom(‘f) program.

For a pair tagged small function extension ‘p, ‘ran(‘p) is the language whose only programs are ‘Func.Sm.Ext.null,
‘left(‘p) and ‘right(‘p).

For a rule tagged small function extension T containing <‘model, ‘tag>, ‘ran(‘r) = ‘des(‘model).

For a tree tagged small function extension ‘t, ‘ran(‘t) is a sub-language of ‘Func.Sm.Ext.Tagged.Tree.

For a tagged small function extension ‘f # ‘Func.Sm.Ext.null, and a ‘dom(‘f) program ‘, ‘x is structurally smaller
than 1.

For a tagged small function extension ‘f # ‘Func.Sm.Ext.null, and a ‘ran(‘f) program ‘x, x is structurally smaller
than 1.

For rule tagged small function extensions ‘fand ‘g, ‘f = ‘g iff ‘domExt(‘f) = ‘domExt(‘g) and, for each ‘dom(‘f) pro-
gram X, ‘f<x> = ‘g<x>.

Proof.
* Holdsif ‘f="g.
e If ‘domExt(‘f) = ‘domExt(‘g) and, for each ‘dom(‘f) program ‘%, f<‘x> = ‘g<x>: ‘dom(‘f) = ‘dom(‘g). O

For rule tagged small function extensions ‘fand ‘g, ‘f = ‘g iff ‘dom(f) = ‘dom(‘g) and, for each ‘dom(‘f) program ‘%,
f<x> =‘g<'x>.
For tagged small function extensions ‘f and ‘g, ‘f = ‘g iff exactly one of the following holds:

e ‘f= ‘Func.Sm.Ext.null and ‘g = ‘Func.Sm.Ext.null.

* ‘f= ‘Func.Sm.Ext.zero and ‘g = ‘Func.Sm.Ext.zero.

e ‘f= ‘Func.Sm.Ext.one and ‘g = ‘Func.Sm.Ext.one.

e ‘fand ‘g are pair tagged small function extensions, and ‘left(‘f) = ‘left(‘g) and ‘right(‘f) = right(‘g).

* ‘fand ‘g are rule tagged small function extensions, and ‘domExt(‘f) = ‘domExt(‘g), and, for each ‘dom(‘f) pro-
gram ‘x, f<'x> = ‘g<x>.

For a rule tagged small function extension 1, ‘untag(‘f) is the rule small function extension ‘untagF such that
‘dom(‘untagF) = ‘dom(‘f) and, for each ‘dom(‘untagF) program ‘x, ‘untagF<‘x> = ‘untag(‘f<‘x>).
For a tagged small function extension ‘f, the rank of ‘f, denoted by ‘rank(‘f), is ‘rank(‘untag(‘f)).

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 46 of 203

7.13 Identity tagged small function extensions

For a valid domain extension ‘A, the identity tagged small function extension on ‘A, denoted by
‘Func.Sm.Ext.Tagged.identity(‘A), is the rule tagged small function extension ‘f such that ‘domExt(‘f) = ‘A and,
for each ‘dom(‘f) program ‘x, ‘f<‘x> = ‘tagged(f, x).

Let ‘Func.Sm.Ext.Tagged.Null.set = ‘Func.Sm.Ext.Tagged.identity(‘Dom.Ext.Null).

Let ‘Func.Sm.Ext.Tagged.Nuro.set = ‘Func.Sm.Ext.Tagged.identity(‘Dom.Ext.Nuro).

Let ‘Func.Sm.Ext.Tagged.Leaf.set = ‘Func.Sm.Ext.Tagged.identity(‘Dom.Ext.Leaf).

Let ‘Func.Sm.Ext.Tagged.Tree.set = ‘Func.Sm.Ext.Tagged.identity(‘Dom.Ext.Tree).

For a valid domain extension ‘A, ‘domExt(‘Func.Sm.Ext.Tagged.identity(‘A)) = ‘A, and
‘dom(‘Func.Sm.Ext.Tagged.identity(‘A)) = ‘dom(‘A).

Proof. Let ‘f = ‘Func.Sm.Ext.Tagged.identity(A). ‘domExt(‘f) = ‘A. ‘dom(f) = ‘dom(‘domExt(f)) = ‘dom(A). O
For a tagged small function extension ‘f, the domain tagged small function extension of f, denoted by ‘dom-
FuncExt(‘f), is ‘Func.Sm.Ext.Tagged.identity(‘domExt(f)).
For a tagged small function extension ‘f, ‘domFuncExt(‘f) is given by one of the following mutually exclusive
cases:

* ‘Func.Sm.Ext.Tagged.Null.set if ‘f = ‘Func.Sm.Ext.null or ‘f = ‘Func.Sm.Ext.zero
¢ ‘Func.Sm.Ext.Tagged.Nuro.set if ‘f = ‘Func.Sm.Ext.one
* ‘Func.Sm.Ext.Tagged.Leaf.set if fis a pair tagged small function extension

¢ ‘Func.Sm.Ext.Tagged.identity(‘domExt(f)) if ‘f is a rule tagged small function extension

For a tagged small function extension ‘f, ‘domFuncExt(‘f) is a rule tagged small function extension.
For a tagged small function extension ‘f, ‘domExt(‘domFuncExt(f)) = ‘domExt(‘f).

Proof. ‘domFuncExt(‘f) = ‘Func.Sm.Ext.Tagged.identity(‘domExt(‘f)).
‘domExt(‘Func.Sm.Ext.Tagged.identity(‘domExt(‘f))) = ‘domExt(‘f). O
For a tagged small function extension f, ‘dom(‘domFuncExt(‘f)) = ‘dom(‘f).

Proof. ‘domExt(‘domFuncExt(f)) = ‘domExt(‘f). O
For tagged small function extensions ‘f and ‘g, ‘domFuncExt(‘f) = ‘domFuncExt(‘g) iff ‘domExt(‘f) = ‘domExt(‘g).

Proof.

o If ‘domExt(‘f) = ‘domExt(‘g): ‘domFuncExt(‘f) = ‘Func.Sm.Ext.Tagged.identity(‘domExt(‘f)). ‘domFuncExt(‘g) =
‘Func.Sm.Ext.Tagged.identity(‘domExt(‘g)).

¢ If ‘domFuncExt(‘f) = ‘domFuncExt(‘g): ‘domExt(‘domFuncExt(‘f)) = ‘domExt(‘f). ‘domExt(‘domFuncExt(‘g)) =
‘domExt(‘g). O

For tagged small function extensions ‘f and ‘g, ‘domFuncExt(‘f) = ‘domFuncExt(‘g) iff, for each tagged small func-
tion extension ‘%, ‘untag(‘x) is a ‘dom(‘f) program iff ‘untag(‘x) is a ‘dom(‘g) program.

For rule tagged small function extensions ‘fand ‘g, ‘f = ‘g iff ‘domFuncExt(‘f) = ‘domFuncExt(‘g) and, for each
‘dom(f) program %, ‘f<x> = ‘g<'x>.

For a tagged small function extension ‘f, ‘fis an identity iff, for each ‘dom(‘f) program %, ‘f<‘x> = ‘tagged(f, x).

For a valid domain extension A, ‘Func.Sm.Ext.Tagged.identity(‘A) is an identity.

For a tagged small function extension ‘f, ‘domFuncExt(f) is an identity.

For rule tagged small function extensions fand ‘g, if f and ‘g are identities, then ‘f = ‘g iff ‘dom(‘f) = ‘dom(‘g).

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 47 of 203

Proof.
e Holdsif ‘f="g.
e If ‘dom(f) = ‘dom(‘g): For each ‘dom(‘f) program ‘%, ‘f<x> = ‘tagged(f, ‘x) = ‘tagged(‘g, x) = ‘g<'x>. O

For rule tagged small function extensions ‘f and ‘g, if ‘f and ‘g are identities, then f = ‘g iff ‘domExt(‘f) =
‘domExt(‘g).
For a rule tagged small function extension 1, if ‘f is an identity, then ‘domFuncExt(‘f) = ‘f.

Proof. ‘domExt(‘domFuncExt(‘f)) = ‘domExt(‘f). ‘domFuncExt(‘f) is a rule tagged small function extension and an
identity. O
For a tagged small function extension ‘f, ‘domFuncExt(‘domFuncExt(‘f)) = ‘domFuncExt(‘f).

Proof. ‘domFuncExt(‘f) is a rule tagged small function extension and an identity. O

7.14 Coercion of a tagged small function extension, and coercion stability theorem

Coercion is to be used to define tagged small function extensions over all tagged small function extensions. Of
course, coercion should be reasonable and useful. Coercion is also computable. For a valid domain extension ‘A,
and a tagged small function extension ‘f, the general principles of the coercion to ‘A of ‘f are:

» If ‘A is a constant domain extension, check whether ‘untag(‘f) is a ‘dom(‘A) program. If so, return ‘untag(‘f). If
not, return ‘Func.Sm.Ext.null.

e If ‘A is a dependent sum domain extension, and ‘f is a pair tagged small function extension, coerce ‘left(‘f) first,
then ‘right(‘f).

 If ‘Ais a dependent sum domain extension, and ‘f is not a pair tagged small function extension, return
‘Func.Sm.Ext.null.

» If ‘A is a dependent product domain extension, and ‘f is a rule tagged small function extension, coerce ‘f to the
desired domain and codomain by adding pre-coercion and post-coercion to ‘f.

* If ‘Ais a dependent product domain extension, and ‘fis not a rule tagged small function extension, return
‘Func.Sm.Ext.null.

For a valid domain extension ‘A, and a tagged small function extension ‘f, the coercion to ‘A of ‘f (a ‘dom(‘A) pro-
gram), denoted by ‘coer(A,), is defined by recursion on <A, ‘f> using < on coercion pairs (a well-founded relation
to be defined shortly):

» If ‘A is a constant domain extension: ‘coer(‘A, f) is ‘untag(‘f) if ‘untag(‘f) is a ‘dom(‘A) program; and
‘Func.Sm.Ext.null otherwise.

e If ‘A is a dependent sum domain extension containing ‘E and ‘f is a pair tagged small function extension:
‘coer(‘A, ‘f) is the pair small function extension ‘p such that ‘left(‘p) = ‘coer(‘domExt(‘F), ‘left(‘f)) and ‘right(‘p)
= ‘coer(‘F<‘left(‘p)>, right(‘f)). Note that ‘dom(‘domExt(‘F)) = ‘dom(‘F),‘left(‘p) is ‘dom(‘F) program, and
‘right(‘p) is a ‘dom(‘F<‘left(‘p)>) program.

e If ‘Ais a dependent sum domain extension, and ‘f is not a pair tagged small function extension: ‘coer(A, f) =
‘Func.Sm.Ext.null.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 48 of 203

» If ‘A is a dependent product domain extension containing ‘E and ‘f is a rule tagged small function extension:
‘coer(‘A, f) is the rule small function extension ‘T such that ‘dom(‘r) = ‘dom(‘F) and, for each ‘dom(‘r) program

X, T<'x> = ‘coer(‘F< x>, f<‘coer(‘domExt(‘f), ‘tagged(‘E x))>). Note that ‘dom(‘domExt(‘f)) = ‘dom(‘f), and
r<x>is a ‘dom(‘F<‘x>) program.

» If ‘A is a dependent product domain extension, and ‘fis not a rule tagged small function extension: ‘coer(‘A, ‘f)
= ‘Func.Sm.Ext.null.

A coercion pair is <‘A, ‘f> where ‘A is a valid domain extension and ‘f is a tagged small function extension. An

ordinal pair is <‘A, ‘f> where ‘A and ‘f are ordinals. For a coercion pair ‘p = <A, ‘>, the ordinal pair of ‘p, denoted by
‘ord(‘p), is <‘rank(‘A), rank(‘f)>.

The well-founded relation used to define coercion is not a well-founded square dance, but a well-founded tango.
For ordinal pairs ‘p = <A, ‘f> and ‘q = <B, ‘g>, let ‘p < ‘qiff at least one of the following holds:

1. A<‘Band f=< ‘g
2. A< Bandf<'g.
3. A<‘gand f< ‘B.
4. ‘A< ‘gand f< ‘B.
Cases 1 and 2 are easy steps, and cases 3 and 4 are twists.

For coercion pairs ‘p and ‘q, let ‘p < ‘q iff ‘ord(‘p) < ‘ord(‘q).

For coercion pairs ‘p = <A, ‘f> and ‘q = <'B, ‘g>, ‘p < ‘qiff <rank(‘A), ‘rank(‘f)> < <‘rank(‘B), rank(‘g)>.
All the recursive calls in the definition of coercion are decreasing.

Proof.

e <‘domExt(‘F), ‘left(‘f)> < <A, ‘t>: rank(‘domExt(‘F)) < ‘rank(‘A). rank(‘left(‘f)) < rank(‘f). By case 2.

<‘F<left(‘p)>, Tight(f)> < <A, f>: rank(‘F<‘left(‘p)>) < ‘rank(‘A). rank(‘right(‘f)) < ‘rank(‘f). By case 2.

<‘domExt(‘f), ‘tagged(‘E x)> < <A, ‘f>: rank(‘domExt(‘f)) = rank(‘dom(f)) = ‘rank(‘f). ‘rank(‘tagged(‘E X)) =
‘rank(‘untag(‘tagged(‘E, ‘x))) = Tank(x) < ‘rank(‘r) < ‘rank(‘A). By case 4.

< F<'x>, f<‘coer(‘domExt(‘f), ‘tagged(‘E X))> > < <A, f>: rank(‘F<x>) < ‘rank(A).
‘rank(‘f<‘coer(‘domExt(‘f), ‘tagged(‘E x))>) < ‘rank(‘f). By case 2.

For ordinal pairs ‘p = <A, ‘f> and ‘q = <‘B, ‘g>, let ‘p <s ‘q iff at least one of the following holds:
1. A<‘Band f< ‘g.

2. A< ‘Band‘f<g.

<s on ordinal pairs is well-founded.

Proof.

» Suppose, for contradiction, that <s on ordinal pairs is not well-founded. Then there is some model ‘p from

‘Nat such that, for each natural number ‘m, ‘p(‘m) is an ordinal pair, ‘p(‘m + 1) <s ‘p(‘m) and at least one of the
following holds:

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 49 of 203

1. ‘left(‘p(‘m + 1)) < ‘left(‘p(‘m)) and ‘right(‘p(‘m + 1)) < ‘right(‘p(‘m)).
2. left(‘p(m+ 1)) < ‘left(‘p(‘m)) and Tight(‘p(‘m + 1)) < Tight(‘p(‘m)).

* If case 1 holds for only finitely many ‘m, then case 2 holds for infinitely many ‘m, and there is an infinite de-
scending chain in the right. Otherwise, there is an infinite descending chain in the left. Either way, < on ordi-
nals is not well-founded, a contradiction. O

< on ordinal pairs is well-founded.
Proof.

* Suppose, for contradiction, that < on ordinal pairs is not well-founded. Then there is some model ‘p from ‘Nat
such that, for each natural number ‘m, ‘p(‘m) is an ordinal pair, ‘p(‘m + 1) < ‘p(‘m) and at least one of the fol-
lowing holds:

1. ‘left(‘p(‘m + 1)) < ‘left(‘p(‘m)) and ‘right(‘p(‘m + 1)) < ‘right(‘p(‘m)).
2. left(‘p(m+ 1)) = ‘left(‘p(‘m)) and Tight(‘p(‘m + 1)) < Tight(‘p(‘m)).
3. left(‘p(‘m + 1)) < Tight(‘p(‘m)) and ‘right(‘p(‘m + 1)) < ‘left(‘p(‘m)).
4. ‘left(‘p(m+ 1)) = Tight(‘p(‘m)) and ‘right(‘p(‘m + 1)) < ‘left(‘p(‘m)).

¢ Let ‘twist be the model from ‘Nat such that, for each natural number ‘m, ‘twist(‘m) = 0 if case 1 or 2 holds; and 1
otherwise. Let ‘path be the model from ‘Nat such that ‘path(0) = 0 and, for each natural number ‘m, ‘path(m +
1) = ‘not(‘path(‘m)) if ‘twist(‘m); and ‘path(‘m) otherwise. Let ‘p0 be the model from ‘Nat such that, for each
natural number ‘m, ‘p0(‘m) = ‘flip(‘p(‘m)) if ‘path(‘m); and ‘p(‘m) otherwise. For each natural number ‘m,
‘p0(‘m) is an ordinal pair and at least one of the following holds:

1. ‘left(‘p0('m + 1)) < ‘left(‘p0(‘m)) and ‘right(‘p0(‘m + 1)) < ‘right(‘p0(‘m)).
2. ‘left(‘p0(‘m + 1)) = ‘left(‘p0(‘m)) and ‘right(‘p0(‘m + 1)) < ‘right(‘p0(‘m)).

¢ For each natural number ‘m, ‘p0(‘m + 1) <s ‘p0(‘m). <s on ordinal pairs is not well-founded, a contradiction.
O

< on coercion pairs is well-founded.

Proof. Suppose, for contradiction, that < on coercion pairs is not well-founded. Then there is some model ‘p
from ‘Nat such that, for each natural number ‘m, ‘p(‘m) is a coercion pair, ‘p(‘m + 1) < ‘p(‘m) and ‘ord(‘p(‘m + 1)) <
‘ord(‘p(‘m)). Let ‘p0 be the model from ‘Nat such that, for each natural number ‘m, ‘p0(‘m) = ‘ord(‘p(‘m)). For each
natural number ‘m, ‘p0(‘m) is an ordinal pair and ‘p0(‘m + 1) < ‘p0(‘m). < on ordinal pairs is not well-founded, a con-
tradiction. O
For a valid domain extension family ‘E and a tagged small function extension ‘%, the coercion by ‘F of x, denoted
by ‘coer(‘E %), is ‘coer(‘domExt(‘F), x).
For a valid domain extension family ‘E and a tagged small function extension ‘x, ‘coer(‘F x) is a ‘dom(‘F) pro-
gram.

Proof. ‘coer(‘E x) = ‘coer(‘domExt(‘F), x). ‘dom(‘domExt(‘F)) = ‘dom(‘F). O
For tagged small function extensions ‘f and ‘x, the coercion by ‘f of ‘x, denoted by ‘coer(, ‘x), is ‘coer(‘domExt(‘f),
X).
For tagged small function extensions ‘f and ‘x, ‘coer(f, x) is a ‘dom(‘f) program.

‘.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 50 of 203

Proof. ‘coer(‘f, x) = ‘coer(‘domExt(‘f), x). ‘dom(‘domExt(‘f)) = ‘dom(‘f). O

For a valid dependent sum domain extension ‘A containing ‘E and a pair tagged small function exten-
sion 1, ‘coer(‘A, ‘f) is the pair small function extension ‘p such that ‘left(‘p) = ‘coer(‘E ‘left(‘f)) and Tight(‘p) =
‘coer(‘F<‘left(‘p)>, ‘right(‘f)).

For a valid dependent product domain extension ‘A containing ‘E and a rule tagged small function extension 1,
‘coer(‘A, f) is the rule small function extension ‘r such that ‘dom(‘r) = ‘dom(‘F) and, for each ‘dom(‘r) program ‘x,
‘r<x> = ‘coer(‘F<x>, ‘f<‘coer(f, ‘tagged(‘F x))>).

Coercion does not make unnecessary changes. The coercion stability theorem: For a valid domain extension ‘A,
and a tagged small function extension f, if ‘untag(‘f) is a ‘dom(‘A) program, then ‘coer(‘A, f) = ‘untag(‘f).

Proof.
e Byinduction on <A, ‘f> using < on coercion pairs.
¢ Holds if ‘A is a constant domain extension.

» If ‘A is a dependent sum domain extension containing ‘E and ‘fis a pair tagged small function extension:
‘coer(‘A, ‘f) is the pair small function extension ‘p such that ‘left(‘p) = ‘coer(‘domExt(‘F), ‘left(‘f)) and ‘right(‘p)
= ‘coer(‘F<‘left(‘p)>, Tight(‘)). ‘untag(‘f) = {‘'untag(‘left(f)), ‘untag(‘right(f))}. Let ‘untagF = ‘untag(‘f).
‘left(‘untagF) = ‘untag(‘left(‘f)) is a ‘dom(‘F) = ‘dom(‘domExt(‘F)) program and ‘coer(‘domExt(‘F), ‘left(‘f))
= ‘left(‘untagF) (by inductive hypothesis). ‘left(‘p) = ‘left(‘untagF). ‘right(‘untagF) = ‘untag(‘right(‘f)) is a
‘dom(‘F<‘left(‘untagF)>) = ‘dom(‘F<‘left(‘p)>) program and ‘coer(‘F<‘left(‘p)>, ‘right(‘f)) = ‘right(‘untagF) (by
inductive hypothesis). ‘right(‘p) = right(‘untagF). ‘p = ‘untagE

e If ‘A is a dependent sum domain extension, and ‘f is not a pair tagged small function extension: ‘coer(A, ‘f) =
‘Func.Sm.Ext.null. ‘untag(‘f) = ‘Func.Sm.Ext.null.

e If ‘Ais a dependent product domain extension containing ‘E and ‘fis a rule tagged small function extension:
‘coer(‘A, ‘f) is the rule small function extension ‘r such that ‘dom(‘r) = ‘dom(‘F) and, for each ‘dom(‘r) pro-
gram ‘X, T<x> = ‘coer(‘F<x>, ‘f<‘coer(‘domExt(‘f), ‘tagged(‘E ‘x))>). ‘untag(‘f) is the rule small function ex-
tension ‘untagF such that ‘dom(‘untagF) = ‘dom(‘f) and, for each ‘dom(‘untagF) program ‘x, ‘untagF<‘x>
= ‘untag(‘f<‘x>). ‘dom(‘untagF) = ‘dom(‘F) = ‘dom(‘r). ‘dom(‘domExt(‘f)) = ‘dom(f) = ‘dom(‘untag(‘f)) =
‘dom(‘F). For each ‘dom(‘r) program ‘x, x is a ‘dom(‘domExt(‘f)) program, ‘untag(‘tagged(‘F %)) = x, and
‘coer(‘domExt(‘f), ‘tagged(‘E, %)) = x (by inductive hypothesis). For each ‘dom(‘r) program ‘), ‘untagF<‘x> =
‘untag(‘f<x>) is a ‘dom(‘F<‘x>) program, and ‘coer(‘F<‘x>, ‘f<x>) = ‘untagF<‘x> (by inductive hypothesis).
‘For each ‘dom(‘r) program ‘%, ‘T<x> = ‘untagF<‘x>. ‘r = ‘untagE

» If ‘A is a dependent product domain extension, and ‘fis not a rule tagged small function extension: ‘coer(‘A, ‘f)
= ‘Func.Sm.Ext.null. ‘untag(‘f) = ‘Func.Sm.Ext.null. O

For a valid domain extension ‘A, and a tagged small function extension 1, if ‘coer(‘A, f) = ‘untag(‘f), then ‘untag(‘f)
is a ‘dom(‘A) program.

Proof. ‘coer(‘A, f) is a ‘dom(‘A) program. O
For a valid domain extension family ‘E and a tagged small function extension ‘%, if ‘untag(‘x) is a ‘dom(‘F) pro-
gram, then ‘coer(‘E %) = ‘untag(‘x).

Proof. ‘dom(‘domExt(‘F)) = ‘dom(‘F). ‘coer(‘E %) = ‘coer(‘domExt(‘F), x) = ‘untag(‘x). O
For tagged small function extensions f and ‘%, if ‘untag(‘x) is a ‘dom(‘f) program, then ‘coer(f, x) = ‘untag(‘x).

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 51 of 203

Proof. ‘dom(‘domExt(‘f)) = ‘dom(‘f). ‘coer(f, x) = ‘coer(‘domExt(‘f), x) = ‘untag(‘x). O
For a valid domain extension ‘A, ‘coer(‘A, ‘Func.Sm.Ext.null) = ‘Func.Sm.Ext.null.

Proof. ‘Func.Sm.Ext.null is a ‘dom(‘A) program. O

For a tagged small function extension ‘f, ‘coer(‘Dom.Ext.Null, f) = ‘Func.Sm.Ext.null.

For a tagged small function extension 4, ‘coer(‘Dom.Ext.Nuro, f) = fif ‘fis a nuro; and ‘Func.Sm.Ext.null other-
wise.

For a tagged small function extension 1, ‘coer(‘Dom.Ext.Leaf, ‘f) = ‘fif ‘fis a leaf small function extension; and
‘Func.Sm.Ext.null otherwise.

For a tagged small function extension ‘f, ‘coer(‘Dom.Ext.Tree, ‘f) = ‘untag(‘f) if ‘fis a tree; and ‘Func.Sm.Ext.null
otherwise.

7.15 Result of a tagged small function extension

Coercion is now used to define tagged small function extensions over all tagged small function extensions, while
maintaining computability. This generalized definition of result is the basis for reduction.

For tagged small function extensions ‘f and ‘x, the result of ‘f and %, denoted by f(x), is ‘f<‘coer(‘f, x)>.

For a valid dependent product domain extension ‘A containing ‘F and a rule tagged small function extension 1,
‘coer(A, ‘f) is the rule small function extension ‘r such that ‘dom(‘r) = ‘dom(‘F) and, for each ‘dom(‘r) program ‘x,
‘r<x> = ‘coer(‘F<x>, f(‘tagged(E, x))).

Proof. For each ‘dom(‘F) program ‘x, ‘f(‘tagged(‘E %)) = ‘f<‘coer(, ‘tagged(‘E x))>. O
For tagged small function extensions ‘f and ‘, if ‘fis an identity, then ‘f(‘x) = ‘tagged(‘f, ‘coer(‘f, x)) and ‘coer(, ‘x)
= ‘untag(‘f(x)).

Proof. ‘f(x) = ‘f<‘coer(‘f, x)> = ‘tagged (1, ‘coer(f, x)). O
For tagged small function extensions ‘f and ‘%, if ‘f is an identity, then ‘untag(‘f(‘x)) is a ‘dom(‘f) program.
For a valid domain extension ‘A, and a tagged small function extension ‘%, ‘Func.Sm.Ext.Tagged.identity(‘A) (‘x) =
‘tagged(‘A, ‘coer(‘A, ‘x)) and ‘coer(A, ‘x) = ‘untag(‘Func.Sm.Ext.Tagged.identity(‘A) (‘x)).

Proof. ‘Func.Sm.Ext.Tagged.identity(‘A) is an identity. ‘Func.Sm.Ext.Tagged.identity(‘A) ()
= ‘tagged(‘Func.Sm.Ext.Tagged.identity(‘A), ‘coer(‘Func.Sm.Ext.Tagged.identity(‘A), x)).
‘domExt(‘Func.Sm.Ext.Tagged.identity(A)) = ‘A. O
For a valid domain extension ‘A, and a tagged small function extension ‘x, ‘un-
tag(‘Func.Sm.Ext.Tagged.identity(‘A)(‘x)) is a ‘dom(‘A) program.
For tagged small function extensions ‘f and ‘%, ‘domFuncExt(‘f) (‘x) = ‘tagged(, ‘coer(, ‘x)) and ‘coer(‘f, x) = ‘un-
tag(‘domFuncExt(‘f) (x)).

Proof. ‘domFuncExt(‘f) = ‘Func.Sm.Ext.Tagged.identity(‘domExt(‘f)). ‘domFuncExt(‘f)(‘x) =
‘Func.Sm.Ext.Tagged.identity(‘domExt(‘f))(‘x) = ‘tagged (‘domExt(‘f), ‘coer(‘domExt(‘f), x)). O
For tagged small function extensions ‘f and ‘x, ‘untag(‘domFuncExt(‘f)(‘x)) is a ‘dom(‘f) program.
For tagged small function extensions ‘f and ‘%, ‘f(‘x) = ‘f<‘untag(‘domFuncExt(‘f)(x))>.

Proof. ‘(%) = ‘f<‘coer(f, x)>. ‘coer(f, ‘x) = ‘untag(‘domFuncExt(‘f)(x)). O
For tagged small function extensions ‘f and ‘x, if ‘untag(‘x) is a ‘dom(‘f) program, then f(‘x) = ‘f<‘untag(‘x)>.

Proof. ‘f(x) = ‘f<‘coer(‘f, x)>. ‘coer(f, x) = ‘untag(x). O
For a tagged small function extension ‘f, and a ‘dom(‘f) program ‘x, ‘f(‘tagged(‘f, x)) = ‘f<'x>.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 52 of 203

Proof. ‘untag(‘tagged(‘f, x)) = x. ‘untag(‘tagged(f, x)) is a ‘dom(‘f) program. O
For a tagged small function extension f, ‘ran(‘f) is the language of all ‘f(‘tagged(‘f, x)) such that x is a ‘dom(‘f)
program.

For a tagged small function extension f, ‘ran(‘f) is the language of all ‘f(‘x) such that x is a tagged small function
extension.

Proof.
e For each ‘ran(‘f) program ‘y: There exists some ‘dom(‘f) program ‘z such that ‘f(‘tagged(, z)) = ‘y.
* For each tagged small function extension x: ‘f(x) = ‘f<‘coer(f, x)>. f(‘x) is a ‘ran(‘f) program. O
For tagged small function extensions ‘f and ‘%, if ‘f is an identity, then ‘untag(‘x) is a ‘dom(‘f) program iff ‘f(‘x) = ‘x.
Proof.
e If ‘untag(x) is a ‘dom(‘f) program: ‘f(‘x) = ‘f<‘untag(x)> = ‘tagged(, ‘untag(‘x)) = x.
o If f(*x) = x: ‘untag(‘f(‘x)) is a ‘dom(‘f) program. O
For tagged small function extensions f and ‘%, ‘untag(‘x) is a ‘dom(‘f) program iff ‘domFuncExt(‘f) (‘%) = ‘x.

Proof. ‘domFuncExt(‘f) is an identity. ‘untag(‘x) is a ‘dom(‘domFuncExt(‘f)) program iff ‘domFuncExt(‘f)(x) = ‘x.
‘dom(‘domFuncExt(‘f)) = ‘dom(‘f). O
For tagged small function extensions ‘f and ‘%, ‘domFuncExt(‘f) (‘domFuncExt(f)(x)) = ‘domFuncExt(‘f) ().

Proof. ‘untag(‘domFuncExt(‘f)(‘x)) is a ‘dom(‘f) program. O
For rule tagged small function extensions ‘fand ‘g, ‘f = ‘g iff ‘dom(f) = ‘dom(‘g) and, for each tagged small function
extension %, ‘f(‘x) = ‘g(‘x).

Proof.
* Holdsif ‘f="g.
e If ‘dom(‘f) = ‘dom(‘g) and, for each tagged small function extension ‘x, ‘f(‘x) = ‘g(‘x):
— For each ‘dom(‘f) program ‘y: Let ‘x = ‘tagged(f, ‘y). x = ‘tagged(‘g, ‘y). ‘untag(‘x) = ‘y. ‘f(x) = f<‘y>. ‘g(x) =
‘g<y>. 1('x) = ‘g(x). f<y> = ‘g<y>.
- f="g. O
For rule tagged small function extensions ‘f and ‘g, ‘f = ‘g iff ‘domExt(‘f) = ‘domExt(‘g) and, for each tagged small
function extension ‘%, f(x) = ‘g(‘x).
For rule tagged small function extensions ‘fand ‘g, ‘f = ‘g iff ‘domFuncExt(‘f) = ‘domFuncExt(‘g) and, for each

tagged small function extension ‘%, f(x) = ‘g(x).
For a tagged small function extension ‘%, ‘Func.Sm.Ext.null(x) = ‘Func.Sm.Ext.null.

Proof. ‘Func.Sm.Ext.null(x) = ‘Func.Sm.Ext.null<‘coer(‘Dom.Ext.Null, ‘x)> = ‘Func.Sm.Ext.null<‘Func.Sm.Ext.null>
= ‘Func.Sm.Ext.null. O
For a tagged small function extension ‘%, ‘Func.Sm.Ext.zero(‘x) = ‘Func.Sm.Ext.null.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 53 of 203

Proof. ‘Func.Sm.Ext.zero(‘x) = ‘Func.Sm.Ext.zero<‘coer(‘Dom.Ext.Null, x)> =
‘Func.Sm.Ext.zero< ‘Func.Sm.Ext.null> = ‘Func.Sm.Ext.null. O
For a tagged small function extension ‘%, ‘Func.Sm.Ext.one(‘x) = x if x is a nuro; and ‘Func.Sm.Ext.null otherwise.

Proof. ‘Func.Sm.Ext.one(x) = ‘Func.Sm.Ext.one<‘coer(‘Dom.Ext.Nuro, ‘x)>. ‘Func.Sm.Ext.one(‘x) is
‘Func.Sm.Ext.one< ‘x> if ‘x is a nuro; and ‘Func.Sm.Ext.one<‘Func.Sm.Ext.null> otherwise. O

For a pair tagged small function extension ‘f, and a tagged small function extension ‘%, f(x) is given by one of the
following mutually exclusive cases:

o ‘left(‘f) if x = ‘Func.Sm.Ext.zero
* ‘right(‘f) if x = ‘Func.Sm.Ext.one
e ‘Func.Sm.Ext.null if x is not Boolean
Proof.
¢ f(x) = f<‘coer(‘Dom.Ext.Leaf, x)>.
* ‘f(*x) is given by one of the following mutually exclusive cases:

- ‘f<‘Func.Sm.Ext.zero> if ‘x = ‘Func.Sm.Ext.zero
- ‘f<‘Func.Sm.Ext.one> if ‘x = ‘Func.Sm.Ext.one
- ‘f<‘Func.Sm.Ext.null> if ‘x is not Boolean O

For pair tagged small function extensions ‘fand ‘g, ‘f = ‘g iff ‘f(‘Func.Sm.Ext.zero) = ‘g(‘Func.Sm.Ext.zero), and
‘f(‘Func.Sm.Ext.one) = ‘g(‘Func.Sm.Ext.one).

7.16 Extensionality theorem

Since NummSquared does not include sets as primitive, within NummSquared, equals on rule tagged small func-
tion extensions cannot refer to equals on their domains (which are languages). One alternative would be to refer
to equals on their domain extensions. But the coercion stability theorem permits a second and simpler alternative,
which is embodied in the following extensionality theorem.

For rule tagged small function extensions ‘f and ‘g, if ‘f and ‘g are identities, then f = ‘g iff, for each tagged small
function extension ‘%, f(x) = ‘g(‘x).

Proof.
* Holdsif f="g.
* Iffor each tagged small function extension %, ‘f(x) = ‘g(‘x):

— For each tagged small function extension ‘x: ‘f(x) = x iff ‘g(‘x) = x. ‘untag(‘x) is a ‘dom(‘f) program iff ‘un-
tag(‘x) is a ‘dom(‘g) program.

— ‘domExt(‘f) = ‘domExt(‘g). O

For tagged small function extensions ‘f and ‘g, ‘domFuncExt(‘f) = ‘domFuncExt(‘g) iff, for each tagged small func-
tion extension ‘%, ‘domFuncExt(‘f) (x) = ‘domFuncExt(‘g) (‘x).

Proof.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 54 of 203

* Holds if ‘domFuncExt(‘f) = ‘domFuncExt(‘g).

e If for each tagged small function extension %, ‘domFuncExt(‘f)(x) = ‘domFuncExt(‘g) (x): ‘domFuncExt(‘f) and
‘domFuncExt(‘g) are rule tagged small function extensions and identities. O

The extensionality theorem: For rule tagged small function extensions ‘f and ‘g, ‘f = ‘g iff for each tagged small
function extension ‘), ‘domFuncExt(‘f) (‘x) = ‘domFuncExt(‘g)(x) and f(‘x) = ‘g(‘x).

Proof.
* Holdsif ‘f="g.

* Iffor each tagged small function extension %, ‘domFuncExt(‘f)(x) = ‘domFuncExt(‘g)(‘x) and f(x) = ‘g(x):
‘domFuncExt(‘f) = ‘domFuncExt(‘g). O

7.17 Some tagged small function extensions

For a tagged small function extension ‘), ‘Func.Sm.Ext.Tagged.Null.set(x) = ‘Func.Sm.Ext.null.

Proof. ‘Func.Sm.Ext.Tagged.Null.set(‘x) = ‘tagged (‘Dom.Ext.Null, ‘coer(‘Dom.Ext.Null, ‘x)). O
For a tagged small function extension ‘%, ‘Func.Sm.Ext.Tagged.Nuro.set(‘x) = x if x is a nuro; and
‘Func.Sm.Ext.null otherwise.

Proof. ‘Func.Sm.Ext.Tagged.Nuro.set(x) = ‘tagged(‘Dom.Ext.Nuro, ‘coer(‘Dom.Ext.Nuro, ‘x)). O
For a tagged small function extension ‘%, ‘Func.Sm.Ext.Tagged.Leaf.set(‘x) is x if ‘x is a leaf small function exten-
sion; and ‘Func.Sm.Ext.null otherwise.

Proof. ‘Func.Sm.Ext.Tagged.Leaf.set(‘x) = ‘tagged(‘Dom.Ext.Leaf, ‘coer(‘Dom.Ext.Leaf, ‘x)). O
For a tagged small function extension ‘), ‘Func.Sm.Ext.Tagged.Tree.set(x) = x if x is a tree; and ‘Func.Sm.Ext.null
otherwise.

Proof. ‘Func.Sm.Ext.Tagged.Tree.set(‘x) = ‘tagged (‘Dom.Ext.Tree, ‘coer(‘Dom.Ext.Tree, ‘x)). ‘coer(‘Dom.Ext.Tree, ‘x) =
‘untag(‘x) if x is a tree; and ‘Func.Sm.Ext.null otherwise. O
For a valid domain extension family ‘E let ‘Func.Sm.Ext.Tagged.sum.dep(‘F) = ‘Func.Sm.Ext.Tagged.identity(‘A)
where ‘A is the dependent sum domain extension containing ‘E

For a valid domain extension family ‘E and a pair tagged small function extension
%, ‘Func.Sm.Ext.Tagged.sum.dep(‘F) (x) is the pair tagged small function extension ‘p
such that ‘left(‘p) = ‘Func.Sm.Ext.Tagged.identity(‘domExt(‘F)) (‘left(x)) and ‘Tight(‘p) =
‘Func.Sm.Ext.Tagged.identity(‘F<‘untag(‘left(‘p))>) (‘right(‘x)). Note that ‘untag(‘left(‘p)) is a ‘dom(‘domExt(‘F))
= ‘dom(‘F) program.

Proof. ‘Func.Sm.Ext.Tagged.sum.dep(‘F) = ‘Func.Sm.Ext. Tagged.identity(‘A) where ‘A is the dependent sum domain
extension containing ‘E ‘untag(‘Func.Sm.Ext.Tagged.sum.dep(‘F)(x)) = ‘coer(‘A, x). ‘coer(‘A, x) is the pair small
function extension ‘q such that ‘left(‘q) = ‘coer(‘E, ‘left(‘x)) and ‘right(‘q) = ‘coer(‘F<‘left(‘q)>, ‘right(‘x)). ‘left(‘p) =
‘tagged(‘E ‘coer(‘F ‘left(x))). ‘right(‘p) = ‘tagged(‘F<‘untag(‘left(‘p))>, ‘coer(‘F<‘untag(‘left(‘p))>, Tright(x))). ‘un-
tag(‘p) = {‘untag(‘left(‘p)), ‘untag(‘right(‘p))}. Let ‘untagP = ‘untag(‘p). ‘left(‘untagP) = ‘untag(‘left(‘p)) = ‘left(‘q).
‘right(‘untagP) = ‘coer(‘F<‘untag(‘left(‘p))>, Tight(x)) = Tight(‘q). ‘q = ‘untagP. ‘Func.Sm.Ext.Tagged.sum.dep(‘F)(x)
= ‘p (by tag irrelevance theorem). O
For a valid domain extension family ‘E and a non-pair tagged small function extension ‘x,
‘Func.Sm.Ext.Tagged.sum.dep(‘F) (‘x) = ‘Func.Sm.Ext.null.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 55 of 203

Proof. ‘Func.Sm.Ext.Tagged.sum.dep(‘F) = ‘Func.Sm.Ext.Tagged.identity(‘A) where ‘A is the dependent sum domain
extension containing ‘E ‘Func.Sm.Ext.Tagged.sum.dep(‘F)(‘x) = ‘tagged(‘A, ‘coer(‘A, X)). O
For a valid domain extension family ‘E let ‘Func.Sm.Ext.Tagged.prod.dep(‘F) = ‘Func.Sm.Ext.Tagged.identity(‘A)
where ‘A is the dependent product domain extension containing ‘E

For a valid domain extension family ‘E and a rule tagged small function extension ‘%,
‘Func.Sm.Ext.Tagged.prod.dep(‘F)(x) is the rule tagged small function extension ‘r such that ‘domExt(‘r) =
‘domExt(‘F) and, for each ‘dom(‘r) program ‘y, T<‘y> = ‘Func.Sm.Ext.Tagged.identity(‘F<‘y>)(‘x(‘tagged(‘r, ‘v))). Note
that ‘dom(‘r) = ‘dom(‘domExt(‘r)) = ‘dom(‘domExt(‘F)) = ‘dom(‘F).

Proof. ‘Func.Sm.Ext.Tagged.prod.dep(‘F) = ‘Func.Sm.Ext.Tagged.identity(‘A) where ‘A is the dependent prod-

uct domain extension containing ‘E ‘untag(‘Func.Sm.Ext.Tagged.prod.dep(‘F)(‘x)) = ‘coer(‘A, x). ‘coer(A, ‘x)

is the rule small function extension ‘s such that ‘dom(‘s) = ‘dom(‘F) and, for each ‘dom(‘s) program ‘y, ‘s<‘y>

= ‘coer(‘F<‘y>, x(‘tagged(‘E ‘y))). ‘dom(‘s) = ‘dom(‘r). For each ‘dom(‘r) program ‘y, ‘r<‘y> = ‘tagged(‘F<‘y>,

‘coer(‘F<'y>, x(‘tagged(‘r, ‘v)))). ‘untag(‘r) is the rule small function extension ‘untagR such that ‘dom(‘untagR)

= ‘dom(‘r) and, for each ‘dom(‘untagR) = ‘dom(‘s) program ‘y, ‘untagR<‘y> = ‘untag(r<‘y>) = ‘s<‘y>. ‘s = ‘untagR.

‘Func.Sm.Ext.Tagged.prod.dep(‘F)(x) = ‘r (by tag irrelevance theorem). O
For a valid domain extension family ‘E and a non-rule tagged small function extension ‘x,

‘Func.Sm.Ext.Tagged.prod.dep(‘F)(x) = ‘Func.Sm.Ext.null.

Proof. ‘Func.Sm.Ext.Tagged.prod.dep(‘F) = ‘Func.Sm.Ext.Tagged.identity(‘A) where ‘A is the dependent product do-
main extension containing ‘E ‘Func.Sm.Ext.Tagged.prod.dep(‘F)(‘x) = ‘tagged(‘A, ‘coer(‘A, x)). O

Domain extensions never appear directly in NummSquared programs, but tagged small function extensions are
used to create domain extensions when necessary.

For a tagged small function extension ‘f, the domain extension family of ‘f, denoted by ‘domExtFam(‘f), is the
valid domain extension family ‘F such that ‘domExt(‘F) = ‘domExt(‘f) and, for each ‘dom(‘F) program ‘%, ‘F<x> =
‘domExt(‘f(‘tagged(‘E x))).

For a tagged small function extension ‘f, ‘domExt(‘domExtFam(f)) = ‘domExt(‘f), ‘dom(‘domExtFam(‘f)) =
‘dom(‘f) and, for each ‘dom(‘f) program ‘%, ‘domExtFam(‘f) <‘x> = ‘domExt(‘f(‘tagged(, x))) = ‘domExt(‘f<x>).

Proof. Let ‘F = ‘domExtFam(‘f). ‘domExt(‘F) = ‘domExt(‘f). ‘dom(‘F) = ‘dom(‘domExt(‘F)) = ‘dom(‘domExt(‘f)) =
‘dom(‘f). O
For a tagged small function extension ‘f, the dependent sum of ‘f, denoted by ‘sumDep(‘f), is
‘Func.Sm.Ext.Tagged.sum.dep(‘domExtFam(f)).
For a tagged small function extension ‘f, and a pair tagged small function extension ‘x, ‘sumDep(‘f)(x) is
the pair tagged small function extension ‘p such that ‘left(‘p) = ‘domFuncExt(‘f) (‘left(‘x)) and ‘right(‘p) = ‘dom-
FuncExt(‘f(‘left(‘p))) (‘right(‘x)).

Proof. ‘sumDep(‘f)(x) = ‘Func.Sm.Ext.Tagged.sum.dep(‘domExtFam(‘f))(‘x).

‘Func.Sm.Ext.Tagged.sum.dep(‘domExtFam(‘f))(‘x) is the pair tagged small function extension ‘p such that ‘left(‘p)

= ‘Func.Sm.Ext.Tagged.identity(‘domExt(‘domExtFam(‘f))) (‘left(x)) and ‘right(‘p) = ‘Func.Sm.Ext.Tagged.identity

(‘domExtFam(‘f) <‘untag(‘left(‘p))>)(‘right(x)). ‘left(‘p) = ‘Func.Sm.Ext.Tagged.identity(‘domExt(‘f)) (‘left(x))

= ‘domFuncExt(f) (‘left(‘x)). ‘domExtFam(‘f)<‘untag(‘left(‘p))> = ‘domExt(‘f(‘left(‘p))). ‘right(‘p) =

‘Func.Sm.Ext.Tagged.identity(‘domExt(‘f(‘left(‘p)))) (‘right(‘x)) = ‘domFuncExt(‘f(‘left(‘p))) (‘right(x)). O
For a tagged small function extension ‘f, and a non-pair tagged small function extension ‘x, ‘sumDep(‘f)(‘x) =

‘Func.Sm.Ext.null.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 56 of 203

Proof. ‘sumDep(‘f)(x) = ‘Func.Sm.Ext.Tagged.sum.dep(‘domExtFam(‘f))(x). O
For a tagged small function extension ‘f, the dependent product of ‘f, denoted by ‘prodDep(f), is
‘Func.Sm.Ext.Tagged.prod.dep(‘domExtFam(‘f)).
For a tagged small function extension ‘f, and a rule tagged small function extension ‘%, ‘prodDep(‘f) () is the
rule tagged small function extension ‘r such that ‘domExt(‘r) = ‘domExt(‘f) and, for each ‘dom(‘r) program ‘y, T<‘y>
= ‘domFuncExt(‘f(‘tagged(‘r, ‘v))) (x(‘tagged(T, v))).

Proof. ‘prodDep(‘f)(x) = ‘Func.Sm.Ext.Tagged.prod.dep(‘domExtFam(‘f))(‘x).
‘Func.Sm.Ext.Tagged.prod.dep(‘domExtFam(‘f))(x) is the rule tagged small function extension
‘r such that ‘domExt(‘r) = ‘domExt(‘domExtFam(‘f)) and, for each ‘dom(‘r) program ‘y, T<‘y> =
‘Func.Sm.Ext.Tagged.identity(‘domExtFam(‘f) <‘y>) (x(‘tagged(‘r, ‘v))). ‘domExt(‘domExtFam(‘f)) = ‘domExt(‘f).
‘domExt(‘r) = ‘domExt(‘f). For each ‘dom(r) program ‘y, ‘domExtFam(‘f)<‘y> = ‘domExt(‘f(‘tagged(‘f, ‘y))) =
‘domExt(‘f(‘tagged(‘r, ‘v))), T<‘y> = ‘Func.Sm.Ext.Tagged.identity(‘domExt(‘f(‘tagged(‘r, ‘v)))) (x(‘tagged(r, ‘y))) =
‘domFuncExt(‘f(‘tagged(T, ‘v))) (x(‘tagged(‘T, ‘v))). O
For a tagged small function extension ‘f, and a non-rule tagged small function extension ‘%, ‘prodDep(‘f) (x) =
‘Func.Sm.Ext.null.

Proof. ‘prodDep(f)(x) = ‘Func.Sm.Ext.Tagged.prod.dep(‘domExtFam(‘f))(x). O

7.18 Large function extensions and truth

Whereas small function extensions are the core of NummSquared, large function extensions are the face of Numm-
Squared.

Alarge function extension contains a model ‘model from ‘Func.Sm.Ext.Tagged to ‘Func.Sm.Ext.Tagged.

Let ‘Func.Lg.Ext be the language of all large function extensions.

For a large function extension ‘f containing ‘model, and a tagged small function extension ‘x, the result of ‘f at x,
denoted by f(x), is ‘model(‘x).

For large function extensions ‘f and ‘g, ‘f = ‘g iff for each tagged small function extension ‘%, f(x) = ‘g(‘x).

For a large function extension 1, the result of ‘f, denoted by ‘res(f), is ‘f(‘Func.Sm.Ext.null).

For a large function extension 1, ‘f is unchanging iff, for each tagged small function extension x, ‘f(‘x) = ‘res(‘f).

For a large function extension 1, ‘f is unchanging iff, for each tagged small function extension ‘%, and each tagged
small function extension ‘y, ‘f(‘x) = f(‘y).

For a tagged small function extension ‘%, x is true iff x = ‘Func.Sm.Ext.one.

For a tagged small function extension ‘f, f is universally true iff, for each tagged small function extension ‘x, ‘f(‘x)
is true.

For a tagged small function extension ‘f, ‘f is universally true iff for each ‘ran(‘f) program ‘y, ‘y is true.

For a tagged small function extension ‘f, ‘f is universally true iff for each ‘dom(‘f) program ‘x, ‘f(‘tagged(‘f, x)) =
‘f<x> is true.

A proposition extension is a large function extension. For a large function extension 1, ‘f is true iff, for each
tagged small function extension ‘x, ‘f(‘x) is true.

Truth of a tagged small function extension is computable. Universal truth of a tagged small function extension is
not computable. Truth of a large function extension is not computable.

7.19 Some computational large function extensions

For a tagged small function extension ‘y, the constant large function extension to ‘y, denoted by
‘Func.Lg.Ext.constant(‘y), is the large function extension containing ‘constant(‘Func.Sm.Ext.Tagged, ‘y).

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 57 of 203

For tagged small function extensions ‘y and ‘%, ‘Func.Lg.Ext.constant(‘y)(x) = y.
For a tagged small function extension ‘y, res(‘Func.Lg.Ext.constant(‘y)) = ‘y.

Proof. ‘Func.Lg.Ext.constant(‘y)(‘Func.Sm.Ext.null) = ‘y.
For a tagged small function extension ‘y, and ‘Func.Lg.Ext.constant(‘y) is unchanging.

Proof. For each tagged small function extension ‘), ‘Func.Lg.Ext.constant(‘y) (‘x) = ‘y and ‘Func.Lg.Ext.constant(‘y) (‘%)

= res(‘Func.Lg.Ext.constant(‘y)). O

Let ‘Func.Lg.Ext.i be the large function extension containing ‘identity(‘Func.Sm.Ext.Tagged).

For a tagged small function extension ‘%, ‘Func.Lg.Ext.i(x) = ‘x.

Let ‘Func.Lg.Ext.null = ‘Func.Lg.Ext.constant(‘Func.Sm.Ext.null).

‘res(‘Func.Lg.Ext.null) = ‘Func.Sm.Ext.null.

Let ‘Func.Lg.Ext.zero = ‘Func.Lg.Ext.constant(‘Func.Sm.Ext.zero).

‘res(‘Func.Lg.Ext.zero) = ‘Func.Sm.Ext.zero.

Let ‘Func.Lg.Ext.one = ‘Func.Lg.Ext.constant(‘Func.Sm.Ext.one).

‘res(‘Func.Lg.Ext.one) = ‘Func.Sm.Ext.one.

Let ‘Func.Lg.Ext.Null.set = ‘Func.Lg.Ext.constant(‘Func.Sm.Ext.Tagged.Null.set).

‘res(‘Func.Lg.Ext.Null.set) = ‘Func.Sm.Ext.Tagged.Null.set.

Let ‘Func.Lg.Ext.Nuro.set = ‘Func.Lg.Ext.constant(‘Func.Sm.Ext.Tagged.Nuro.set).

‘res(‘Func.Lg.Ext.Nuro.set) = ‘Func.Sm.Ext.Tagged.Nuro.set.

Let ‘Func.Lg.Ext.Leaf.set = ‘Func.Lg.Ext.constant(‘Func.Sm.Ext.Tagged.Leaf.set).

‘res(‘Func.Lg.Ext.Leaf.set) = ‘Func.Sm.Ext.Tagged.Leaf.set.

Let ‘Func.Lg.Ext.Tree.set = ‘Func.Lg.Ext.constant(‘Func.Sm.Ext.Tagged.Tree.set).

‘res(‘Func.Lg.Ext.Tree.set) = ‘Func.Sm.Ext.Tagged.Tree.set.

‘Func.Lg.Ext.null, ‘Func.Lg.Ext.zero, ‘Func.Lg.Ext.one, ‘Func.Lg.Ext.Null.set, ‘Func.Lg.Ext.Nuro.set,
‘Func.Lg.Ext.Leaf.set and ‘Func.Lg.Ext.Tree.set are unchanging.

Let ‘Func.Lg.Ext.Null be the large function extension such that, for each tagged small function extension ‘),
‘Func.Lg.Ext.Null(‘x) is ‘Func.Sm.Ext.one if x = ‘Func.Sm.Ext.null; and ‘Func.Sm.Ext.zero otherwise.

Let ‘Func.Lg.Ext.Pair be the large function extension such that, for each tagged small function extension ‘%,
‘Func.Lg.Ext.Pair(‘x) is ‘Func.Sm.Ext.one if x is a pair tagged small function extension; and ‘Func.Sm.Ext.zero oth-
erwise.

Let ‘Func.Lg.Ext.dom be the large function extension such that, for each tagged small function extension ‘x,
‘Func.Lg.Ext.dom(‘x) = ‘domFuncExt(x).

7.20 Some computational combinations of large function extensions

For large function extensions ‘outer and ‘inner, the large composition of ‘outer and ‘inner, denoted by [‘outer ‘in-
ner], is the large function extension such that, for each tagged small function extension ‘x, [‘outer ‘inner](‘x) =
‘outer(‘inner(‘x)). Large composition is similar to axiom I1.7 in [40].

For large function extensions ‘called and ‘arg, the small composition of ‘called and ‘arg, denoted by (‘called
‘arg), is the large function extension such that, for each tagged small function extension ‘), (‘called ‘arg)(x) =
‘called(x) (‘arg(x)).

The definition of small composition requires some explanation. ‘called(‘x), a tagged small function extension, is
called with argument ‘arg(‘x), another tagged small function extension.

For a natural number ‘m > 2, and large function extensions ‘X, X1, ..., Xqp 9, X1, et (X9 X1 ... X0 Xepy21)

= (((*xg X1) -+ Xq-2) Xy -1)-

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 58 of 203

For large function extensions ‘l and ‘r, the pair of 1 and ‘r, denoted by {‘1 ‘r}, is the large function extension such
that, for each tagged small function extension ‘x, {1 1} (‘x) = {‘1(x), T(‘x)}. Pair is similar to axiom IL.6 in [40].
For large function extensions ‘l and ‘r, ‘res({‘l r}) = {‘res(‘]), ‘res(‘r)}.

Proof. {1 ‘t}(‘Func.Sm.Ext.null) = {‘1(‘Func.Sm.Ext.null), ‘r(‘Func.Sm.Ext.null)}. O
For large function extensions ‘l and r, if ‘1 and ‘r are unchanging, then {‘1 r} is unchanging.

Proof. For each tagged small function extension ‘), {‘'l ‘1}(x) = {1(%), ‘r(¥)} = {‘res(‘D), ‘res(‘1)} = res({'l 1}). O

Pairs are used to represent tuples (in a manner similar to [36, p.16]). For a natural number ‘m = 2, and large func-
tion extensions Xq, X1, ..., ‘X‘m-z» ‘X‘m-l’ let {xg X7 ... ‘X‘m-z ‘X‘m-l} ={{{xg X1} ... ‘X‘m-z} ‘X‘m-l}'

Pairs are used to represent lists (in a manner similar to [29]). For a natural number ‘m, and large function exten-
sions X, X1, .. ‘X‘m_l, let 1{’xg X7 ... ‘X‘m-l} ={xp {7 ... {‘X‘m-l ‘Func.Lg.Ext.zero}}}.

“1{} = ‘Func.Lg.Ext.zero, not ‘Func.Lg.Ext.null. The empty list is often interpreted differently than the absence of
relevant information.

There are no multi-argument large function extensions, but tuples are used to simulate multiple arguments. The
fact that all large function extensions are actually unary makes it much simpler to implement arity polymorphic
combinations of large functions (for example, Curry and quantifications). For a natural number ‘m = 2, and large
function extensions ‘fand g, X7, ..., X1, let [T % %] ... Xy 11 =[T{%0 X7 ... X131

For a large function extension ‘family, the dependent sum of ‘family, denoted by “s.d[‘family], is the large func-
tion extension such that, for each tagged small function extension ‘%, ~s.d[family] (‘x) = ‘sumDep(‘family(‘x)).

For a large function extension ‘family, the dependent product of ‘family, denoted by “p.d[‘family], is the large
function extension such that, for each tagged small function extension ‘x, “p.d[‘family] (‘x) = ‘prodDep(‘family(x)).

For large function extensions ‘uncurry and ‘restrictor, the Curry of ‘uncurry to ‘restrictor, denoted by “c[‘uncurry
‘restrictor], is the large function extension such that, for each tagged small function extension ‘x, “c[‘uncurry ‘restric-
tor] (x) is the rule tagged small function extension ‘r such that ‘domExt(‘r) = ‘domExt(‘restrictor(‘x)) and, for each
‘dom(‘r) program ‘y, ‘T<‘y> = ‘uncurry({'x, ‘tagged(‘r, ‘y)}).

The definition of Curry requires some explanation. For large function extensions ‘uncurry and ‘restrictor, and
a small function extension ‘%, “c[‘uncurry ‘Testrictor](‘x) is a rule tagged small function extension ‘r representing a
partial call to ‘uncurry at ‘x. However, ‘r is restricted using the domain extension of ‘restrictor(‘x). The restriction is
necessary because T is a tagged small function extension, not a large function extension.

For large function extensions ‘uncurry and ‘restrictor, and a tagged small function extension ‘x,
‘domExt("c[‘uncurry Testrictor](‘x)) = ‘domExt(‘restrictor(x)), ‘dom("c[‘uncurry ‘restrictor](x)) = ‘dom(‘restrictor(‘x)),
and ‘domFuncExt("c[‘uncurry ‘restrictor](‘x)) = ‘domFuncExt(‘restrictor(x)).

For large function extensions ‘uncurry and ‘restrictor, and tagged small function extensions x and ‘y, “c[‘uncurry
‘restrictor] (‘x) (‘y) = ‘uncurry({’x, ‘domFuncExt(‘restrictor(‘x)) (‘y)}).

Proof. “c[uncurry Testrictor](‘x) is the rule tagged small function extension ‘r such that ‘domExt(‘r) =
‘domExt(‘restrictor(‘x)) and, for each ‘dom(‘r) program ‘z, ‘r<‘z> = ‘uncurry({'x, ‘tagged(‘r, ‘z)}). “c[‘uncurry ‘restric-
tor] (‘%) (‘y) = 1(‘y) = ‘r<‘untag(‘domFuncExt(‘1)(‘y))> = ‘uncurry({'x, ‘domFuncExt(‘r) (‘y)}). ‘domFuncExt(‘r) = ‘dom-
FuncExt(‘restrictor(‘x)). O

For large function extensions ‘ifP, ‘thenP and ‘elseP the if-then-else of ‘ifP, ‘thenP and ‘elseP, denoted by ~ite[‘ifP
‘thenP ‘elseP], is the large function extension such that, for each tagged small function extension ‘x, “ite[‘ifP ‘thenP
‘elseP](‘x) is given by one of the following mutually exclusive cases:

o ‘elseP(x) if ‘ifP(‘x) = ‘Func.Sm.Ext.zero

¢ ‘thenP(%) if ‘ifP(‘x) = ‘Func.Sm.Ext.one

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 59 of 203

¢ ‘Func.Sm.Ext.null if ‘ifP(‘x) is not Boolean

Recall that, for a small function extension f # ‘Func.Sm.Ext.null, and a ‘field(‘f) program ‘x, x is structurally
smaller than ‘f. This fact permits a simple terminating recursion principle for NummSquared.

For large function extensions ‘start and ‘step, the recursion of ‘start and ‘step, denoted by “r[‘start ‘step], is the
large function extension such that, for each tagged small function extension ‘x, “r[‘start ‘step](x) is defined by recur-
sion on ‘untag(‘x):

e If x = ‘Func.Sm.Ext.null: “r[‘start ‘step] (x) = ‘start(‘x).
e If‘x # ‘Func.Sm.Ext.null: “r[‘start ‘step] (‘x) = ‘step({TDom, ‘rRan, x}) where:

— TDom is the rule tagged small function extension such that ‘domExt(‘rDom) = ‘domExt(‘x) and, for each
for each ‘dom(‘rDom) program ‘y, ‘tDom<‘y> = "r[‘start ‘step](‘tagged(‘rDom, ‘y)). Note that ‘dom(‘rDom)
= ‘dom(x) = ‘dom(‘untag(‘x)) and, for each ‘dom(‘rDom) program ‘y, ‘untag(‘tagged(‘rDom, ‘y)) = ‘y, and ‘y
is structurally smaller than ‘untag(‘x).

- ‘rRan is the rule tagged small function extension such that ‘domExt(‘TRan) = ‘domExt(‘x) and, for each
‘dom(‘rRan) program ‘y, rtRan<‘y> = “r[‘start ‘step] (‘x(‘tagged(‘rRan, y))). Note that ‘dom(‘rRan) =
‘dom(x) and, for each ‘dom(‘rRan) program ‘y, x(‘tagged(TRan, ‘y)) = x(‘tagged(‘x, y)) = x<‘y>, and
‘untag(‘x<‘y>) is structurally smaller than ‘untag(‘x).

The above recursion principle requires some explanation. In the x # ‘Func.Sm.Ext.null case, TDom and ‘TRan are
the restrictions of “r[‘start ‘step] to ‘dom(‘x) and ‘ran(‘x), respectively.

7.21 Some non-computational large function extensions and combinations

NummSquared includes equals, which is non-computational by the extensionality theorem. Equals therefore cannot
be used in reduction, but is essential in propositions. Let ‘Func.Lg.Ext.eq be the large function extension such that,
for each tagged small function extension ‘p, ‘Func.Lg.Ext.eq(‘p) is given by one of the following mutually exclusive
cases:

* ‘Func.Sm.Ext.one if ‘p is a pair tagged small function extension, and ‘left(‘p) = ‘right(‘p)
e ‘Func.Sm.Ext.zero if ‘p is a pair tagged small function extension, and ‘left(‘p) # ‘right(‘p)
¢ ‘Func.Sm.Ext.null if ‘p is not a pair tagged small function extension

Hilbert’s epsilon operator is a form of the axiom of choice, and can be used to define both existential and univer-
sal quantification. The epsilon calculus is a logic based on the Hilbert operator. (See [4] for an overview and rules of
inference.)

NummSquared includes adaptations of the Hilbert operator and the inference rules of the epsilon calculus.
Hilbert cannot be used in reduction, but is essential in propositions. For a large function extension ‘pred, the Hilbert
of ‘pred, denoted by "h[‘pred], is the large function extension such that, for each tagged small function extension
‘%, "h[‘pred](‘x) is some tagged small function extension ‘y such that ‘pred({‘x, ‘y}) is true if such a ‘y exists; and
‘Func.Sm.Ext.null otherwise.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 60 of 203

8 NummSquared syntax

NummSquared abstract syntax is now defined, including reduction and proof. Abstract syntax is also related to se-
mantics. NummSquared concrete syntax is also defined. NummSquared is variable-free.
NummSquared syntax is developed as follows:

Normalized large functions are defined. Not all normalized large functions are in simplest form. In lambda
calculus terminology, NummSquared does not reduce under lambdas.

The extension of a normalized large function (a large function extension) is defined. A normalized large func-
tion is true iff its extension is true.

Reduction is defined in a way that is sufficient for software where the output is a tree (which is typical), for
macros performing syntactic manipulation of normalized large functions, and for manipulating proofs.

Quoted and unquoted are defined for normalized large functions.

Macro expanded is defined.

Substitution is defined.

The substitution theorem: substitution preserves equality.

Comments and identifiers are defined.

Large functions, syntactic sugar for normalized large functions, are defined.
Definitions, definition lists, modules and abstract programs are defined.
Contexts are defined.

Normal forms and validity are defined.

Some true large function extensions and inferences are given.

Some true normalized large functions and inferences are given. Among these are induction, modus ponens,
specialization and substitution.

Proofs are defined.

The proposition and validity of a proof are defined.

The soundness theorem: the proposition of a valid proofis true.
Quoted and unquoted are defined for proofs.

NummSquared averts Russell’s paradox.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally

8.1 Normalized large functions

A computational normalized constant is exactly one of the following:

the identity computational normalized constant, ‘Constant.Norm.Compu.i

the null computational normalized constant, ‘Constant.Norm.Compu.null

the zero computational normalized constant, ‘Constant.Norm.Compu.zero

the one computational normalized constant, ‘Constant.Norm.Compu.one

the null set computational normalized constant, ‘Constant.Norm.Compu.Null.set
the nuro set computational normalized constant, ‘Constant.Norm.Compu.Nuro.set
the leaf set computational normalized constant, ‘Constant.Norm.Compu.Leaf.set
the tree set computational normalized constant, ‘Constant.Norm.Compu.Tree.set
the null predicate computational normalized constant, ‘Constant.Norm.Compu.Null
the pair predicate computational normalized constant, ‘Constant.Norm.Compu.Pair

the domain computational normalized constant, ‘Constant.Norm.Compu.dom

The above computational normalized constants are written in the concrete syntax as follows:

~1

~null
~Zero

~one

~Null.set
~Nuro.set

~Leaf.set

~Tree.set
~Null
~Pair

~dom

A non-computational normalized constant is exactly one of the following:

the equals non-computational normalized constant, ‘Constant.Norm.Noncompu.eq

The above non-computational normalized constants are written in the concrete syntax as follows:

A normalized constant is exactly one of the following:

a computational normalized constant

a non-computational normalized constant

Copyright © 2004-2006 Samuel Howse. All rights reserved.

October 18, 2006 / 61 of 203

NummSquared 2006a0 Done Formally October 18, 2006 / 62 of 203

Normalized large functions are defined inductively. Let ‘Func.Lg.Norm be the language of all normalized large
functions.
A normalized large function is exactly one of the following:

* anormalized constant
* anormalized combination

A normalized combination is exactly one of the following:
* a computational normalized combination
¢ anon-computational normalized combination

A computational normalized combination is exactly one of the following:
* alarge composition computational normalized combination
¢ asmall composition computational normalized combination
* a pair computational normalized combination
* a dependent sum computational normalized combination
¢ adependent product computational normalized combination
¢ a Curry computational normalized combination
e an if-then-else computational normalized combination
e arecursion computational normalized combination

A large composition computational normalized combination contains <‘outer, ‘inner> where ‘outer and ‘in-
ner are normalized large functions. For normalized large functions ‘outer and ‘inner, let [‘outer ‘inner] be the large
composition computational normalized combination containing <‘outer, ‘inner>.

A small composition computational normalized combination contains <‘called, ‘arg> where ‘called and ‘arg are
normalized large functions. For normalized large functions ‘called and ‘arg, let (‘called ‘arg) be the small composi-
tion computational normalized combination containing <‘called, ‘arg>.

A pair computational normalized combination contains <‘left, ‘right> where ‘left and ‘right are normalized
large functions. For normalized large functions ‘left and ‘right, let {‘left ‘right} be the pair computational normalized
combination containing <‘left, right>.

A dependent sum computational normalized combination contains ‘family where ‘family is a normalized large
function. For a normalized large function ‘family, let “s.d[family] be the dependent sum computational normalized
combination containing ‘family.

A dependent product computational normalized combination contains ‘family where ‘family is a normalized
large function. For a normalized large function ‘family, let “p.d[‘family] be the dependent product computational
normalized combination containing ‘family.

A Curry computational normalized combination contains <‘uncurry, ‘restrictor> where ‘uncurry and ‘restrictor
are normalized large functions. For normalized large functions ‘uncurry and ‘restrictor, let “c[‘uncurry ‘restrictor] be
the Curry computational normalized combination containing <‘uncurry, ‘restrictor>.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 63 of 203

An if-then-else computational normalized combination contains <‘ifP, ‘thenP, ‘elseP> where ‘ifP, ‘thenP and
‘elseP are normalized large functions. For normalized large functions ‘ifP, ‘thenP and ‘elseP, let ~ite[‘ifP ‘thenP ‘elseP]
be the if-then-else computational normalized combination containing <‘ifP, ‘thenbP, ‘elseP>.

A recursion computational normalized combination contains <‘start, ‘step> where ‘start and ‘step are normal-
ized large functions. For normalized large functions ‘start and ‘step, let "r[‘start ‘step] be the recursion computational
normalized combination containing <‘start, ‘step>.

A non-computational normalized combination is exactly one of the following:

¢ a Hilbert non-computational normalized combination

A Hilbert non-computational normalized combination contains ‘pred where ‘pred is a normalized large func-
tion. For a normalized large function ‘pred, let "h[‘pred] be the Hilbert non-computational normalized combination
containing ‘pred.

This concludes the inductive definition.

For a natural number ‘m > 2, and normalized large functions %, X7, ..., X429, X471, 16t (X9 X7 ... X0
‘X‘m-l) = (((*xg x7) ... Xm-2) ‘x«m_l).

For a natural number ‘m = 2, and normalized large functions ‘xg, %y, ..., ‘X‘m-z’ ‘X‘m-l’ let {xg X7 ... ‘X‘m-z
Xem-1} = %0 X1} X0} X1

For a natural number ‘m, and normalized large functions ‘xg, %y, ..., ‘X‘m-l’ let I{’xg %71 ... ‘X‘m—l} ={%g9 {x7 ...
{'X4q-1 ‘Constant.Norm.Compu.zero}}}.

For a natural number ‘m = 2, and normalized large functions fand %g, %, ..., ‘X‘m-l’ let ['f xg X7 ... ‘X‘m—l] =[f

{‘XO ‘Xl ‘X‘m_l}].

8.2 Extension and truth of a normalized large function

For a normalized constant ‘c, the extension of ‘c (a large function extension), denoted by ‘ext(‘c), is given by one of
the following mutually exclusive cases:

e ‘Func.Lg.Ext.iif ‘c = ‘Constant.Norm.Compu.i

* ‘Func.Lg.Ext.null if ‘c = ‘Constant.Norm.Compu.null

* ‘Func.Lg.Ext.zero if ‘c = ‘Constant.Norm.Compu.zero

* ‘Func.Lg.Ext.one if ‘c = ‘Constant.Norm.Compu.one

¢ ‘Func.Lg.Ext.Null.set if ‘c = ‘Constant.Norm.Compu.Null.set
e ‘Func.Lg.Ext.Nuro.set if ‘c = ‘Constant.Norm.Compu.Nuro.set
* ‘Func.Lg.Ext.Leaf.set if ‘c = ‘Constant.Norm.Compu.Leaf.set
* ‘Func.Lg.Ext.Tree.set if ‘c = ‘Constant.Norm.Compu.Tree.set
¢ ‘Func.Lg.Ext.Null if ‘c = ‘Constant.Norm.Compu.Null

¢ ‘Func.Lg.Ext.Pair if ‘c = ‘Constant.Norm.Compu.Pair

e ‘Func.Lg.Ext.dom if ‘c = ‘Constant.Norm.Compu.dom

* ‘Func.Lg.Ext.eq if ‘c = ‘Constant.Norm.Noncompu.eq

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 64 of 203

For a normalized large function 1, the extension of ‘f (a large function extension), denoted by ‘ext(‘f), is defined
by recursion on ‘f:

¢ as above if fis a normalized constant

¢ [‘ext(‘outer) ‘ext(‘inner)], if ‘f = [‘outer ‘inner]

(‘ext(‘called) ‘ext(‘arg)) if ‘f = (‘called ‘arg)

{‘ext(‘left) ‘ext(‘right)} if ‘f = {‘left ‘right}

“s.d[‘ext(‘family)] if ‘f = “s.d[family]

“p-dl‘ext(‘family)] if ‘f = "p.d[‘family]
* “c[‘ext(‘uncurry) ‘ext(‘restrictor)] if ‘f = “c[‘uncurry ‘restrictor]
o “ite[‘ext(‘ifP) ‘ext(‘thenP) ‘ext(‘elseP)] if ‘f = "ite[‘ifP ‘thenP ‘elseP]

e “r[‘ext(‘start) ‘ext(‘step)] if ‘f = “r[‘start ‘step]

“h{‘ext(‘pred)] if ‘f = "h[‘pred]
There is some large function extension ‘f such that there exists no normalized large function ‘fn with ‘ext(‘fn) = ‘f.

Proof. ‘Func.Lg.Ext is uncountable. ‘Func.Lg.Norm is countably infinite. O
For a normalized large function ‘fn, there is some normalized large function fn0 # ‘fn with ‘ext(‘fn0) = ‘ext(‘fn).

Proof. Let ‘fn0 = [‘Constant.Norm.Compu.i ‘fn]. O

Not all normalized large functions are in simplest form. In lambda calculus terminology, NummSquared does not
reduce under lambdas. In future, NummSquared may reduce under lambdas.

For a normalized large function ‘f, and a tagged small function extension ‘%, the result of ‘f at x, denoted by “f(‘x),
is ‘ext(‘N) (x).

For a normalized large function 1, the result of ‘f, denoted by ‘res(‘f), is ‘res(‘ext(‘f)).

For a normalized large function 1, ‘f is unchanging iff ‘ext(‘f) is unchanging.

A normalized proposition is a normalized large function. For a normalized large function f, ‘fis true iff ‘ext(‘f) is
true.

8.3 Reduction: computed of a normalized large function

For a normalized large function f, the property of ‘f being deep computational is defined by recursion on ‘f:
 If ‘fis a computational normalized constant: ‘f is deep computational.

¢ If fis a non-computational normalized constant: ‘f is not deep computational.

If ‘f = ['outer ‘inner]: ‘fis deep computational iff ‘outer and ‘inner are deep computational.

If ‘f = (‘called ‘arg): fis deep computational iff ‘called and ‘arg are deep computational.

If f = {‘left ‘right}: ‘f is deep computational iff ‘left and ‘right are deep computational.

If ‘f = "s.d[‘family]: ‘f is deep computational iff ‘family is deep computational.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 65 of 203

If f = "p.d[‘family]: ‘fis deep computational iff ‘family is deep computational.

If ‘f = “c['uncurry ‘restrictor]: ‘f is deep computational iff ‘uncurry and ‘restrictor are deep computational.

If ‘f = "ite[‘ifP ‘thenP ‘elseP]: ‘fis deep computational iff ‘ifP, ‘thenP and ‘elseP are deep computational.

If f = "r[‘start ‘step]: ‘fis deep computational iff ‘start and ‘step are deep computational.
 If fis a non-computational normalized combination: ‘fis not deep computational.

For a deep computational normalized large function ‘f, ‘res(f) is computable. However, ‘res(f) is a tagged small
function extension (a semantic object), but a normalized large function (a syntactic object) is desired for reduction.
For a normalized large function 1, the property of ‘f being a tree is defined by recursion on ‘f:

¢ If f= ‘Constant.Norm.Compu.null, f = ‘Constant.Norm.Compu.zero or ‘f = ‘Constant.Norm.Compu.one: ‘fis a
tree.

o If ‘f = {left right}: fis a tree iff ‘left and ‘right are trees.
* Otherwise, ‘fis not a tree.
For a tree normalized large function 4, ‘fis deep computational.
Proof.
* Byinduction on .
¢ Holds if f = ‘Constant.Norm.Compu.null, ‘f = ‘Constant.Norm.Compu.zero or ‘f = ‘Constant.Norm.Compu.one
o If f= {‘left ‘right}: ‘left and ‘Tight are deep computational (by inductive hypothesis). O
For a free normalized large function ‘f, res(‘f) is given by one of the following mutually exclusive cases:
¢ ‘Func.Sm.Ext.null if f = ‘Constant.Norm.Compu.null
¢ ‘Func.Sm.Ext.zero if ‘f = ‘Constant.Norm.Compu.zero
¢ ‘Func.Sm.Ext.one if ‘f = ‘Constant.Norm.Compu.one
* {Tes(‘left), Tes(‘right)} if ‘f = {‘left ‘right}
Proof.
¢ Holds if f = ‘Constant.Norm.Compu.null, f = ‘Constant.Norm.Compu.zero or ‘f = ‘Constant.Norm.Compu.one

o If ‘f= {‘left ‘right}: res({‘left Tight}) = res(‘ext({‘left ‘right})) = res({’ext(‘left) ‘ext(‘right)}) = {‘res(‘ext(‘left)),
‘res(‘ext(‘right))} = {‘res(‘left), ‘res(‘right)}. O

For a tree normalized large function 1, ‘res(‘f) is is a tree.
Proof.
* Byinduction on 1.

* Holds if f = ‘Constant.Norm.Compu.null, f= ‘Constant.Norm.Compu.zero or f= ‘Constant.Norm.Compu.one

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 66 of 203

o If ‘f= {‘left ‘right}: res(‘left) and ‘res(‘right) are trees (by inductive hypothesis). {Tres(‘left), res(‘right)} is a tree.
‘res({‘left ‘right}) is a tree. O

For a treenormalized large function ‘f, ‘fis unchanging.
Proof.
* Byinduction on ‘f.
¢ Holds if f = ‘Constant.Norm.Compu.null, ‘f = ‘Constant.Norm.Compu.zero or ‘f = ‘Constant.Norm.Compu.one

o If ‘f = {left right}: ‘left and ‘right are unchanging (by inductive hypothesis). ‘ext(‘left) and ‘ext(‘right) are un-
changing. {‘ext(‘left) ‘ext(‘right)} is unchanging. ‘ext({‘left right}) is unchanging. {‘left ‘right} is unchanging. O

For a tree tagged small function extension ‘x, the normal form of x (a tree normalized large function), denoted by
‘norm(‘x), is defined by recursion on ‘x:

* ‘Constant.Norm.Compu.null if x = ‘Func.Sm.Ext.null
¢ ‘Constant.Norm.Compu.zero if ‘x = ‘Func.Sm.Ext.zero
¢ ‘Constant.Norm.Compu.one if ‘x = ‘Func.Sm.Ext.one
e {norm(‘left(x)) norm(‘right(‘x))} if ‘x is a pair tagged small function extension
For a tree tagged small function extension ‘%, ‘res(‘norm(‘x)) = x.
Proof.
* Byinduction on ‘x.

e If x = ‘Func.Sm.Ext.null: ‘norm(‘Func.Sm.Ext.null) = ‘Constant.Norm.Compu.null.
‘res(‘Constant.Norm.Compu.null) = ‘Func.Sm.Ext.null.

e If x = ‘Func.Sm.Ext.zero: ‘norm(‘Func.Sm.Ext.zero) = ‘Constant.Norm.Compu.zero.
‘res(‘Constant.Norm.Compu.zero) = ‘Func.Sm.Ext.zero.

e If x = ‘Func.Sm.Ext.one: ‘norm(‘Func.Sm.Ext.one) = ‘Constant.Norm.Compu.one.
‘res(‘Constant.Norm.Compu.one) = ‘Func.Sm.Ext.one.

 If x is a pair tagged small function extension: ‘norm(‘x) = {‘norm(‘left(‘x)) ‘norm(‘right(x))}. res(‘norm(x)) =
{res(‘norm(‘left(‘x))), ‘res(norm(‘right(‘x)))} = {‘left(‘x), right(x)} (by induction hypothesis). {‘left(x), ‘right(x)}
= ‘X_ D

For a normalized large function ‘f, the normalized result of ‘f, denoted by ‘resNorm(‘f), is ‘norm(‘res(‘f)) if ‘res(‘f)
is a tree; and ‘null otherwise.

For a deep computational normalized large function ‘f, TesNorm(‘f) is computable.

For a tree normalized large function 1, resNorm(‘f) = ‘f.

Proof.
¢ ‘res(‘f) is a tree. ‘TesNorm(‘f) = ‘norm(‘res(‘f)).

* Byinduction on 1.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 67 of 203

¢ If T = ‘Constant.Norm.Compu.null: ‘res(‘Constant.Norm.Compu.null) = ‘Func.Sm.Ext.null.
‘norm(‘Func.Sm.Ext.null) = ‘Constant.Norm.Compu.null

¢ If f=‘Constant.Norm.Compu.zero: ‘res(‘Constant.Norm.Compu.zero) = ‘Func.Sm.Ext.zero.
‘norm(‘Func.Sm.Ext.zero) = ‘Constant.Norm.Compu.zero.

e If f=‘Constant.Norm.Compu.one: ‘res(‘Constant.Norm.Compu.one) = ‘Func.Sm.Ext.one.
‘norm(‘Func.Sm.Ext.one) = ‘Constant.Norm.Compu.one.

o If ‘f= {‘left ‘right}: ‘left and ‘right are trees. ‘res(‘left) and ‘res(‘right) are trees. ‘resNorm(‘left) = ‘norm(‘res(‘left))
and ‘resNorm(‘right) = ‘norm(‘res(‘right)). ‘res(‘f) = {res(‘left), ‘res(‘right)}. ‘norm(‘res(‘f)) = {‘norm(‘left(‘res(f)))
‘norm(‘right(‘res(‘f)))} = {‘norm(‘res(‘left)) ‘norm(‘res(‘right))} = {‘left right} (by induction hypothesis). O

For a normalized large function ‘f, the computed of ‘f, denoted by ‘computed(‘f), is TesNorm(‘f) if ‘fis deep com-
putational; and ‘null otherwise.

For a normalized large function 4, ‘computed(‘f) is computable.

For a normalized large function 1, ‘computed(‘f) = ‘null iff ‘f is nor deep computational, or ‘res(‘f) is not a tree.

For a tree normalized large function 1, ‘computed(‘f) = ‘.

Proof. ‘fis deep computational. ‘computed(‘f) = ‘resNorm(‘f). O
In NummSquared, the computed of a normalized large function embodies the concept of reduction.
In future, the definition of ‘norm(‘x) may be extended to the case where x includes rule tagged small function ex-
tensions. To do so seems to simply require including more syntactic information in the semantics so that rule tagged
small function extensions generated from computation may be transformed into one of the following normal forms:

* ‘Constant.Norm.Compu.Null.set

¢ ‘Constant.Norm.Compu.Nuro.set

¢ ‘Constant.Norm.Compu.Leaf.set

* ‘Constant.Norm.Compu.Tree.set

¢ a dependent sum computational normalized combination

¢ a dependent product computational normalized combination

¢ a Curry computational normalized combination

However, the present definition of ‘norm(‘x) is sufficient for software where the output is a tree (which is typical).
Of course, nothing in the present definition of ‘norm(‘x) prevents rule tagged small function extensions from being
used in the computation of the output, provided they are not present in the output itself. Also, as is demonstrated
below, the present definition of ‘norm(‘x) is even sufficient for macros performing syntactic manipulation of normal-
ized large functions, and for manipulating proofs.

8.4 Normal form of a natural number

For a natural number ‘m, the normal form of ‘m (a tree normalized large function), denoted by ‘norm(‘m), is defined
by recursion on ‘m:

* ‘Constant.Norm.Compu.zero if m=0
* ‘Constant.Norm.Compu.one if ‘ m=1

e {‘norm(‘m - 1) ‘Constant.Norm.Compu.null} if ‘m = 2

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 68 of 203

8.5 Quoted of a normalized large function

Because NummSquared is variable-free, quotation is very easy. The quoted of a normalized large function is a tree
normalized large function containing a tag and a list of children.

For a natural number ‘tag, and a normalized large function ‘children, the tree of ‘tag and ‘children, denoted by
‘tree(‘tag, ‘children), is {‘norm(‘tag) ‘children}.

For a natural number ‘tag, and a tree normalized large function ‘children, ‘tree(‘tag, ‘children) is a tree.

For a normalized large function 1, the tag of ‘f, denoted by ‘tag(‘f), is given by one of the following mutually exclu-
sive cases:

¢ (if f= ‘Constant.Norm.Compu.i

¢ 1if f=‘Constant.Norm.Compu.null

¢ 2if f = ‘Constant.Norm.Compu.zero

e 3if f= ‘Constant.Norm.Compu.one

e 4if f = ‘Constant.Norm.Compu.Null.set

e 5if f = ‘Constant.Norm.Compu.Nuro.set

¢ 6if f = ‘Constant.Norm.Compu.Leaf.set

e 7if f= ‘Constant.Norm.Compu.Tree.set

e 8if ‘f = ‘Constant.Norm.Compu.Null

e 9if f= ‘Constant.Norm.Compu.Pair

e 10if f = ‘Constant.Norm.Compu.dom

e 11if f=‘Constant.Norm.Noncompu.eq

* 12if ‘fis a large composition computational normalized combination
* 13if ‘fis a small composition computational normalized combination
e 14 if ‘fis a pair computational normalized combination

» 15if fis a dependent sum computational normalized combination

¢ 16if Tis a dependent product computational normalized combination
e 17 if ‘fis a Curry computational normalized combination

¢ 18if ‘fis an if-then-else computational normalized combination

* 19if ‘fis a recursion computational normalized combination

e 20if ‘fis a Hilbert non-computational normalized combination

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 69 of 203

For a normalized constant ‘c, the quoted of ‘c (a tree normalized large function), denoted by ‘quoted(‘c), is
‘tree(‘tag(‘c), “1{}).

For a normalized large function 1, the quoted of ‘f (a tree normalized large function), denoted by ‘quoted(‘f), is
defined by recursion on ‘f:

* as above if ‘fis a normalized constant

* ‘tree(‘tag(‘f), "l{‘quoted(‘outer) ‘quoted(‘inner)}) if ‘f = [‘outer ‘inner]

* ‘tree(‘tag(‘f), "l{‘quoted(‘called) ‘quoted(‘arg)}) if ‘f = (‘called ‘arg)

* ‘tree(‘tag(‘f), "1{‘quoted(‘left) ‘quoted(‘right)}) if ‘f = {‘left right}

* ‘tree(‘tag(‘f), "l{‘quoted(‘family)}) if ‘f = “s.d[family]

o ‘tree(‘tag(‘f), "l{‘quoted(‘family)}) if ‘f = "p.d[‘family]

* ‘tree(‘tag(‘f), "l{‘quoted(‘uncurry) ‘quoted(‘restrictor)}) if ‘f = “c[‘uncurry ‘restrictor]

* ‘tree(‘tag(‘f), "l{'quoted(‘ifP) ‘quoted(‘thenP) ‘quoted(‘elseP)}) if ‘f = “ite[‘ifP ‘thenP ‘elseP]
* ‘tree(‘tag(‘f), "l{‘quoted(‘start) ‘quoted(‘step)}) if f = “r[‘start ‘step]

* ‘tree(‘tag(‘f), "l{‘quoted(‘pred)}) if ‘f = "h[‘pred]

8.6 Unquoted of a normalized large function

For a normalized large function f, the unquoted of ‘f, denoted by ‘unquoted(f), is the normalized large function ‘g
such that ‘quoted(‘g) = ‘fif such exists; and null otherwise.

For a normalized large function 4, ‘unquoted(‘f) is computable.

For a normalized large function 1, ‘f is quoted iff ‘unquoted(‘f) # mull.

For a normalized large function 1, ‘f is quoted iff there exists a normalized large function ‘g such that ‘quoted(‘g) =
‘f.

For a normalized large function 1, if ‘fis quoted, then fis a tree.

8.7 Macro expanded

Macro expansion combines quotation, computation and unquotation to perform syntactic manipulation of normal-
ized large functions.

For a list ‘1 = 1<), X1, ..., X¢y,.1> of ‘Func.Lg.Norm, the quoted of ‘l, denoted by ‘quoted(‘]), is “1{‘quoted (‘%)
‘quoted(xy) ... ‘quoted(‘xqy, 1)}

For alist ‘] of ‘Func.Lg.Norm, ‘quoted(‘]) is a tree.

For a normalized large function ‘f, and a list ‘I of ‘Func.Lg.Norm, the macro pre-expanded of ‘f at ‘], denoted by
‘macroPreexpanded(f, ‘1), is [‘f ‘quoted(‘])].

For a normalized large function ‘f, and a list ‘I of ‘Func.Lg.Norm, ‘macroPreexpanded(, ‘1) is deep computational
iff ‘fis deep computational.

For a normalized large function f, and a list ‘I of ‘Func.Lg.Norm, the macro expanded of ‘f at ‘],
denoted by ‘macroExpanded(, ‘1), is null if ‘computed(‘macroPreexpanded(‘f, 1)) = ‘null; and ‘un-
quoted(‘computed(‘macroPreexpanded(‘f, ‘1))) otherwise.

For a normalized large function ‘f, and a list ‘l of ‘Func.Lg.Norm, ‘macroExpanded(, ‘1) is computable.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 70 of 203

For a normalized large function ‘f, and a list ‘1 of ‘Func.Lg.Norm, ‘macroExpanded(‘f, ‘) = ‘null iff ‘com-
puted(‘macroPreexpanded(f, ‘1)) = ‘null, or ‘unquoted(‘computed(‘macroPreexpanded(‘f, ‘1))) = ‘null.

For a normalized large function ‘f, and a list ‘l of ‘Func.Lg.Norm, ‘macroExpanded(, ‘1) = ‘null iff ‘fis not deep
computational, ‘res(‘macroPreexpanded(‘f, ‘1)) is not a tree, or ‘computed(‘macroPreexpanded(f, ‘1)) is not quoted.

8.8 Substitution and substitution theorem

Because NummSquared is variable-free, substitution is very easy.

For normalized large functions f, ‘g, x and ‘y, the predicate ‘f substitutes to ‘g replacing ‘x by ‘y, denoted by
‘subst(f, ‘g, 'x, ‘y), is defined by recursion on ‘f. For normalized large functions 1, ‘g, x and ‘y, ‘subst(f, ‘g, x, ‘y) is true
iff at least one of the following holds:

e f="xand‘g="y.

* ‘fand ‘g are normalized constants and ‘f = ‘g.

‘f = [‘'outerF ‘innerF], ‘g = [‘outerG ‘innerG], ‘subst(‘outerE, ‘outerG, ‘), ‘y), and ‘subst(‘innerE ‘innerG, ‘%, ‘y).
¢ The other normalized combination cases are similar and are omitted.

In substitution, replacement of an occurrence of ‘x by ‘y is optional.
The substitution theorem: For normalized large functions 4, ‘g, x and ‘y, if ‘ext(x) = ‘ext(‘y) and ‘subst(‘f, ‘g, x, ‘y),
then ‘ext(‘f) = ‘ext(‘g).

Proof.
* Byinduction on 1.
e If‘f="xand ‘g = ‘y: ‘ext(f) = ‘ext('x). ‘ext(‘g) = ‘ext(‘y).
* Holds if ‘f and ‘g are normalized constants and ‘f = ‘g.

e If f= [‘outerF ‘innerF], ‘g = [‘outerG ‘innerGl, ‘subst(‘outerE, ‘outerG, ‘x, ‘y), and ‘subst(‘innerE, ‘innerG, ‘), y):
‘ext(‘outerF) = ‘ext(‘outerG) and ‘ext(‘innerF) = ‘ext(‘innerG) (by inductive hypothesis). ‘ext(‘f) = [‘ext(‘outerF)
‘ext(‘innerF)]. ‘ext(‘g) = [‘ext(‘outerG) ‘ext(‘innerG)].

¢ The other normalized combination cases are similar and are omitted. O

8.9 Comments

A comment contains a list of ‘Nat. Recall that natural numbers in the range 0-1114111 are Unicode code points. Nat-
ural numbers above this range may be interpreted in whatever way you wish.

In the concrete syntax, a comment is written between * and ‘. A comment containing 0 may be omitted in the
concrete syntax. In the future, more details will be provided.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 71 of 203

8.10 Identifiers

An identifier start character is an uppercase letter character (2-7), a lowercase letter character (a-z), or one of the
following:

V1 &x+—/<=>\"|

A digit character is one of 0-9.

An identifier continue character is an identifier start character or a digit character. Let ‘Chr.Ident.Cont be the
language of all identifier continue characters.

A simple identifier contains <‘start, ‘conts> where ‘start is an identifier start character and ‘conts is a list of
‘Chr.Ident.Cont. Let ‘Ident.Simp be the language of all simple identifiers.

A simple identifier containing <‘start, ‘conts> where ‘conts = 1<'xg, X1, ..., ‘X‘m_ 1> is written in the concrete syn-
tax as follows:

‘start ‘x0'x1...'xm-1

An identifier contains a non-empty list of ‘Ident.Simp. Let ‘Ident be the language of all identifiers.
An identifier containing 1<'xq, X1, ..., Xy, _9, X¢y,.1> is written in the concrete syntax as follows:

In NummSquared, identifiers are hierarchical names. However, an object is always referenced by its entire identi-
fier. Therefore, careful choice of short prefixes and suffixes is encouraged.

8.11 Large functions

Large functions are just syntactic sugar for normalized large functions.

A natural number primitive contains a natural number.

In the concrete syntax, a natural number primitive is written in decimal notation. In the future, more details will
be provided.

A character primitive contains a natural number. Recall that natural numbers in the range 0-1114111 are Uni-
code code points. Natural numbers above this range may be interpreted in whatever way you wish.

In the concrete syntax, a character primitive is written between ’ and * (not). In the future, more details will be
provided.

A string primitive contains a list of ‘Nat.

In the concrete syntax, a string primitive is written between " and * (not "). In the future, more details will be
provided.

A primitive is exactly one of the following:

¢ anatural number primitive
* acharacter primitive
* astring primitive
A computational non-normalized constant is exactly one of the following:
¢ the left computational non-normalized constant, ‘Constant.Nonnorm.Compu.left

¢ the right computational non-normalized constant, ‘Constant.Nonnorm.Compu.right

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 72 of 203

¢ the confirmation with null computational non-normalized constant, ‘Constant.Nonnorm.Compu.conf.n
¢ the negation with null computational non-normalized constant, ‘Constant.Nonnorm.Compu.not.n

e the null to zero computational non-normalized constant, ‘Constant.Nonnorm.Compu.Null.to.Zero

¢ the zero predicate computational non-normalized constant, ‘Constant.Nonnorm.Compu.Zero

¢ the one predicate computational non-normalized constant, ‘Constant.Nonnorm.Compu.One

* the nuro predicate computational non-normalized constant, ‘Constant.Nonnorm.Compu.Nuro

¢ the Boolean predicate computational non-normalized constant, ‘Constant.Nonnorm.Compu.Boo

* the leaf predicate computational non-normalized constant, ‘Constant.Nonnorm.Compu.Leaf

¢ the simple predicate computational non-normalized constant, ‘Constant.Nonnorm.Compu.Simp

¢ the rule predicate computational non-normalized constant, ‘Constant.Nonnorm.Compu.Rule

* the tree predicate step pair computational non-normalized constant, ‘Con-
stant.Nonnorm.Compu.Tree.step.pair

e the tree predicate step computational non-normalized constant, ‘Constant.Nonnorm.Compu.Tree.step
* the tree predicate computational non-normalized constant, ‘Constant.Nonnorm.Compu.Tree

¢ the result computational non-normalized constant, ‘Constant.Nonnorm.Compu.res

¢ the nuro set result computational non-normalized constant, ‘Constant.Nonnorm.Compu.Nuro.set.res
* the tree set result computational non-normalized constant, ‘Constant.Nonnorm.Compu.Tree.set.res

* the dependent sum result left computational non-normalized constant, ‘Con-
stant.Nonnorm.Compu.s.d.res.left

* the dependent sum result right computational non-normalized constant, ‘Con-
stant.Nonnorm.Compu.s.d.res.right

¢ the dependent sum result computational non-normalized constant, ‘Constant.Nonnorm.Compu.s.d.res

* the dependent product result rule uncurry computational non-normalized constant, ‘Con-
stant.Nonnorm.Compu.p.d.res.rule.uncurry

* the dependent product result rule computational non-normalized constant, ‘Con-
stant.Nonnorm.Compu.p.d.res.rule

* the dependent product result computational non-normalized constant, ‘Constant.Nonnorm.Compu.p.d.res
* the negation computational non-normalized constant, ‘Constant.Nonnorm.Compu.not
¢ the implication with null computational non-normalized constant, ‘Constant.Nonnorm.Compu.imp.n

¢ the implication computational non-normalized constant, ‘Constant.Nonnorm.Compu.imp

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 73 of 203

The above computational non-normalized constants are written in the concrete syntax as follows:

~left

~right

~conf.n

~not.n
~Null.to.Zero
~Zero

~One

~Nuro

~Boo

~Leaf

~Simp

~Rule
~Tree.step.pair
~Tree.step
~Tree

~res
~Nuro.set.res
~Tree.set.res
~s.d.res.left
~s.d.res.right
~s.d.res

d
d
~p.d.res.rule.uncurry
d.res.rule

d

.res

A non-computational non-normalized constant is exactly one of the following:

* the small universal quantification non-computational non-normalized constant, ‘Con-
stant.Nonnorm.Noncompu.all.sm

e the equal pairs non-computational non-normalized constant, ‘Constant.Nonnorm.Noncompu.eq.pair
e the equal results at non-computational non-normalized constant, ‘Constant.Nonnorm.Noncompu.eq.res.at
* the equal results non-computational non-normalized constant, ‘Constant.Nonnorm.Noncompu.eq.res

¢ the equal domain results non-computational non-normalized constant, ‘Con-
stant.Nonnorm.Noncompu.eq.dom.res

* the equal both results non-computational non-normalized constant, ‘Con-
stant.Nonnorm.Noncompu.eq.both.res

¢ the equals right-hand-side non-computational non-normalized constant, ‘Con-
stant.Nonnorm.Noncompu.eq.rhs

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 74 of 203

* the not equals non-computational non-normalized constant, ‘Constant.Nonnorm.Noncompu.not.eq
The above non-computational non-normalized constants are written in the concrete syntax as follows:

~all.sm
~=.pair
~=.res.at
~=.res
~=.dom.res
~=.both.res
~=.rhs

~not .=

A non-normalized constant is exactly one of the following:
¢ a computational non-normalized constant
* anon-computational non-normalized constant
A constant is exactly one of the following:
* anormalized constant
* anon-normalized constant

Large functions are defined inductively. Let ‘Func.Lg be the language of all large functions.
Alarge function is exactly one of the following:

* aprimitive

* aconstant

* acombination

* aglobal name

¢ alocal name

* acomputation

* aquotation

* an unquotation

* amacro expansion

Combinations, computations, quotations, unquotations and macro expansions are written in the concrete syntax
in the same way as in the informal part.
A combination is exactly one of the following:

¢ a computational combination

e anon-computational combination

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 75 of 203

A computational combination is exactly one of the following:
* alarge composition computational combination
¢ asmall composition computational combination
¢ atuple computational combination
e alist computational combination
* a dependent sum computational combination
¢ adependent product computational combination
* a Curry computational combination
e an if-then-else computational combination
e arecursion computational combination
* arestrict computational combination
* arestrict to range computational combination
* a Curry augmented uncurry computational combination
* a Curry augmented computational combination
e a Curry result computational combination
* arecursion on domain computational combination
* arecursion on range computational combination
e arecursion step computational combination
* arecursion right-hand-side computational combination

A large composition computational combination contains <‘outer, ‘inners> where ‘outer is a large function,
and ‘inners is a non-empty list of ‘Func.Lg. For a large function ‘outer, and a list ‘inners = 1<'xg, X1, ..., ‘X‘m-l > of
‘Func.Lg such that ‘m > 1, let [‘outer ‘Xg X ... X¢y,_1] be the large composition computational combination contain-
ing <‘outer, ‘inners>.

A small composition computational combination contains a list ‘calledAndArgs of ‘Func.Lg of length = 2. For a
list ‘calledAndArgs = 1<'xq, X1, ..., Xm-1> of ‘Func.Lg such that ‘m = 2, let (% X7 ... X¢n-1) be the small composi-
tion computational combination containing ‘calledAndArgs.

A tuple computational combination contains a list ‘components of ‘Func.Lg of length = 2. For a list ‘compo-
nents = 1<'xg, X1, ..., Xqy,.1> of ‘Func.Lg such that ‘m = 2, let {*xg X7 ... X« ,_1} be the tuple computational combi-
nation containing ‘components.

A list computational combination contains a list ‘elements of ‘Func.Lg. For a list ‘elements = 1<%g, X1, ...,
Xqq-1> of ‘Func.Lg, let 1{x(X ... X¢y,_1} be the list computational combination containing ‘elements.

A dependent sum computational combination contains ‘family where ‘family is a large function. For a large
function ‘family, let “s.d[‘family] be the dependent sum computational combination containing ‘family.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 76 of 203

A dependent product computational combination contains ‘family where ‘family is a large function. For a large
function ‘family, let “p.d[‘family] be the dependent product computational combination containing ‘family.

A Curry computational combination contains <‘uncurry, restrictor> where ‘uncurry and ‘restrictor are large
functions. For large functions ‘uncurry and ‘restrictor, let “c[‘uncurry ‘restrictor] be the Curry computational combi-
nation containing <‘uncurry, Testrictor>.

An if-then-else computational combination contains <‘ifP, ‘thenP, ‘elseP> where ‘ifP, ‘thenP and ‘elseP are large
functions. For large functions ‘ifP, ‘thenP and ‘elseP let “ite[‘ifP ‘thenP ‘elseP] be the if-then-else computational com-
bination containing <‘ifP, ‘thenB, ‘elseP>.

A recursion computational combination contains <‘start, ‘step> where ‘start and ‘step are large functions. For
large functions ‘start and ‘step, let “r[‘start ‘step] be the recursion computational combination containing <‘start,
‘step>.

A restrict computational combination contains ‘unrestrict where ‘unrestrict is a large function. For a large func-
tion ‘unrestrict, let “restrict[‘unrestrict] be the restrict computational combination containing ‘unrestrict.

A restrict to range computational combination contains ‘unrestrict where ‘unrestrict is a large function. For a
large function ‘unrestrict, let “restrict.ran[‘unrestrict] be the restrict to range computational combination containing
‘unrestrict.

A Curry augmented uncurry computational combination contains <‘uncurry, ‘augmentor> where ‘uncurry and
‘augmentor are large functions. For large functions ‘uncurry and ‘augmentor, let “c.aug.uncurry[‘uncurry ‘augmen-
tor] be the Curry augmented uncurry computational combination containing <‘uncurry, ‘augmentor>.

A Curry augmented computational combination contains <‘uncurry, ‘restrictor, ‘augmentor> where ‘un-
curry, ‘restrictor and ‘augmentor are large functions. For large functions ‘uncurry, restrictor and ‘augmentor, let
“c.aug[‘uncurry Testrictor ‘augmentor] be the Curry augmented computational combination containing <‘uncurry,
‘restrictor, ‘augmentor>.

A Curry result computational combination contains ‘uncurry where ‘uncurry is a large function. For a large
function ‘uncurry, let “c.res[‘uncurry] be the Curry result computational combination containing ‘uncurry.

A recursion on domain computational combination contains <‘start, ‘step> where ‘start and ‘step are large
functions. For large functions ‘start and ‘step, let "r.dom|‘start ‘step] be the recursion on domain computational
combination containing <‘start, ‘step>.

A recursion on range computational combination contains <‘start, ‘step> where ‘start and ‘step are large func-
tions. For large functions ‘start and ‘step, let “r.ran|‘start ‘step] be the recursion on range computational combination
containing <'‘start, ‘step>.

A recursion step computational combination contains <‘start, ‘step> where ‘start and ‘step are large functions.
For large functions ‘start and ‘step, let “r.step[‘start ‘step] be the recursion step computational combination contain-
ing <‘start, ‘step>.

A recursion right-hand-side computational combination contains <‘start, ‘step> where ‘start and ‘step are large
functions. For large functions ‘start and ‘step, let “r.rhs[‘start ‘step] be the recursion right-hand-side computational
combination containing <‘start, ‘step>.

A non-computational combination is exactly one of the following:

¢ a Hilbert non-computational combination

* an existential quantification non-computational combination

* anot universal quantification non-computational combination
* auniversal quantification non-computational combination

* aunary universal quantification non-computational combination

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 77 of 203

* an inductive domain hypothesis non-computational combination
* an inductive range hypothesis non-computational combination

¢ an inductive case at non-computational combination

 an inductive case non-computational combination

A Hilbert non-computational combination contains ‘pred where ‘pred is a large function. For a normalized large
function ‘pred, let "h[‘pred] be the Hilbert non-computational combination containing ‘pred.

An existential quantification non-computational combination contains ‘pred where ‘pred is a large function.
For a normalized large function ‘pred, let “exist[‘pred] be the existential quantification non-computational combina-
tion containing ‘pred.

A not universal quantification non-computational combination contains ‘pred where ‘pred is a large function.
For a normalized large function ‘pred, let "not.all[‘pred] be the not universal quantification non-computational com-
bination containing ‘pred.

A universal quantification non-computational combination contains ‘pred where ‘pred is a large function. For
anormalized large function ‘pred, let ~all[‘pred] be the universal quantification non-computational combination
containing ‘pred.

A unary universal quantification non-computational combination contains ‘pred where ‘pred is a large
function. For a normalized large function ‘pred, let "all.una[‘pred] be the unary universal quantification non-
computational combination containing ‘pred.

An inductive domain hypothesis non-computational combination contains ‘pred where ‘pred is a large func-
tion. For a normalized large function ‘pred, let “induc.hyp.dom[‘pred] be the inductive domain hypothesis non-
computational combination containing ‘pred.

An inductive range hypothesis non-computational combination contains ‘pred where ‘pred is a large func-
tion. For a normalized large function ‘pred, let “induc.hyp.ran[‘pred] be the inductive range hypothesis non-
computational combination containing ‘pred.

An inductive case at non-computational combination contains ‘pred where ‘pred is a large function. For a nor-
malized large function ‘pred, let “induc.case.at[‘pred] be the inductive case at non-computational combination con-
taining ‘pred.

An inductive case non-computational combination contains ‘pred where ‘pred is a large function. For a normal-
ized large function ‘pred, let “induc.case[‘pred] be the inductive case non-computational combination containing
‘pred.

A global name contains an identifier. Global names are used to reference definitions. A global name containing
‘id is written in the concrete syntax as ‘id.

Alocal name contains an identifier. Local names are used to reference local tuple accessors. Local names are not
variables. A local name containing ‘id is written in the concrete syntax as follows:

%'id

Global and local names are easily distinguished in the concrete syntax and therefore do not conflict.

A computation contains a large function ‘called. For a large function ‘called, let "C[‘called] be the computation
containing ‘called.

A quotation contains a large function ‘unquoted. For a large function ‘unquoted, let "Q[‘unquoted] be the quota-
tion containing ‘unquoted.

An unquotation contains a large function ‘quoted. For a large function ‘quoted, let "UQ[‘quoted] be the unquota-
tion containing ‘quoted.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 78 of 203

A macro expansion contains <‘called, ‘args> where ‘called is a large function, and ‘args is a list of ‘Func.Lg. For a
large function ‘called, and a list ‘args =1<‘xq, X1, ..., ‘X4y,_1> of ‘Func.Lg, let #‘called[x(X1 ... X«,.1] be the macro
expansion containing <‘called, ‘args>. As the syntax for macro expansion suggests, ‘called (a large function) is used
to combine the elements of ‘args (also large functions). ‘called abstracts over all large functions, but can perform
only syntactic manipulation of ‘args. For macros, syntactic manipulation is often sufficient.

This concludes the inductive definition.

8.12 Definitions, definition lists, modules and abstract programs

An identifier list is a list of ‘Ident.
Alocal tuple accessor list contains an identifier list of length = 2. Each identifier is the name of a local tuple ac-
Cessor.

Alocal tuple accessor list containing 1<‘idg, ‘idy, ..., ‘id4y,_1> is written in the concrete syntax as follows:
{$'idm-1 ... $'idl %'idO0}

There is a reversal between the abstract syntax and the concrete syntax.

Alocal tuple accessor checker contains <‘lis, ‘onFail> where ‘lis is a local tuple accessor list, and ‘onFail is a large
function.

Alocal tuple accessor checker containing <‘lis, ‘onFail> is written in the concrete syntax as follows:

‘lis \ ‘onFail

If ‘onFail = ‘Constant.Norm.Compu.null, \ ‘onFail may be omitted in the concrete syntax. (‘onFail = ‘Con-
stant.Norm.Compu.null is the default.)

For a local tuple accessor checker ‘checker containing <‘lis, ‘onFail>, the list of ‘checker, denoted by
‘lis(‘checker), is ‘lis.

For a local tuple accessor checker ‘checker containing <‘lis, ‘onFail>, the on fail of ‘checker, denoted by ‘on-
Fail(‘checker), is ‘onFail.

Alocal tuple accessor descriptor is exactly one of the following:

* 0
* alocal tuple accessor checker

The local tuple accessor descriptor 0 is omitted in the concrete syntax.

A definition contains <‘comment, ‘name, ‘accessTupleLocDesc, Ths> where ‘comment is a comment, ‘name is
an identifier, ‘accessTupleLocDesc is a local tuple accessor descriptor, and ‘rhs is a large function. Let ‘Def be the
language of all definitions.

A definition containing <‘comment, ‘name, ‘accessTupleLocDesc, ‘ths> is written in the concrete syntax as fol-
lows:

‘comment
‘name ‘accessTuplelLocDesc = ‘rhs;

For a definition ‘def containing <‘comment, ‘name, ‘accessTupleLocDesc, ‘ths>, the name of ‘def, denoted by
‘name(‘def), is ‘name.

For a definition ‘def containing <‘comment, ‘name, ‘accessTupleLocDesc, ‘ths>, the right-hand-side of ‘def, de-
noted by ‘Ths(‘def), is ‘Ths.

A definition list contains a list of ‘Def.

A definition list containing 1< ‘defy), ‘defy, ..., ‘defxm_l > is written in the concrete syntax as follows:

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 79 of 203

‘defm-1

‘defl
‘def0

There is a reversal between the abstract syntax and the concrete syntax.
For definition lists ‘dl0 containing ‘10 and ‘dl1 containing ‘1, the concatenation of ‘dl0 and ‘dl1, denoted by ‘dl0 +

‘dl1, is the definition list containing ‘10 + ‘11.
A module contains <‘comment, ‘name, ‘defLis> where ‘comment is a comment, ‘name is an identifier, and ‘de-

fLis is a definition list. Let ‘Modu be the language of all modules.
A module containing <‘comment, ‘name, ‘defLis> is written in the concrete syntax as follows:

‘comment
‘name {

‘deflis

}

A NummSquared module serves only as a logical grouping and a place to attach an overview comment. The
name of the module has no effect on the names of the definitions in the module. All definitions in a module can
be referenced from later modules, without qualifying by the module name. In future, NummSquared modules may

serve additional purposes.
For a module ‘modu containing <‘comment, ‘name, ‘defLis>, the name of ‘modu, denoted by ‘name(‘modu), is

‘name.
For a module ‘modu containing <‘comment, ‘name, ‘defLis>, the definition list of ‘modu, denoted by ‘de-

fLis(‘modu), is ‘defLis.
An abstract program contains a list of ‘Modu.
An abstract program containing l<‘modug, ‘moduy, ..., ‘modu«,,_; > is written in the concrete syntax as follows:

‘modum-—1

‘modul
‘modu0

There is a reversal between the abstract syntax and the concrete syntax.

For an abstract program ‘prog containing I<‘modug, ‘moduy, ..., ‘modufm_l >, the module name list of ‘prog,
denoted by ‘moduNameLis(‘prog), is I<‘name(‘modug), ‘name(‘moduy), ..., ‘name(‘moduqy, _1)>.

For an abstract program ‘prog containing I<‘modug, ‘moduy, ..., ‘modu«,,_1 >, the definition list of ‘prog, de-
noted by ‘defLis(‘prog), is ‘defLis(‘modug) + ‘defLis(‘moduy) + ... + ‘defLis(‘modu‘m_l).

8.13 Contexts

A normalized definition contains <‘name, ‘rhs> where ‘name is an identifier and ‘rhs is a normalized large function.

Let ‘Def.Norm be the language of all normalized definitions.
For a normalized definition ‘def containing <‘name, ‘rhs>, the name of ‘def, denoted by ‘name(‘def), is ‘name.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 80 of 203

For a normalized definition ‘def containing <‘name, ‘rhs>, the right-hand-side of ‘def, denoted by ‘rhs(‘def), is
‘rhs.

A global context contains a list of ‘Def.Norm.

For a global context ‘cg containing ‘l, and an identifier ‘id, let ‘search(‘cg, ‘id) be the search first data for a normal-
ized definition ‘def such that ‘name(‘def) = ‘id in ‘1.

For a global context ‘cg containing ‘l, and an identifier ‘id, let ‘cg(‘id) be ‘null if ‘search(‘cg, ‘id) = null; and
‘rhs(‘search(‘cg, ‘id)) otherwise.

For a global context ‘cg containing ‘I, ‘cg is valid iff, for each identifier ‘id, the property of being normalized defi-
nition ‘def such that ‘name(‘def) = ‘id is not duplicitous in ‘L

For an identifier list ‘1, and an identifier ‘id, let ‘1(‘id) be the search first index for an identifier ‘id0 such that ‘id0 =
‘idin 1.

For an identifier list ‘], ‘l is valid iff, for each identifier ‘id, the property of being an identifier ‘id0 such that ‘id0 =
‘id is not duplicitous in ‘L

For a local tuple accessor list ‘accessors containing ‘1, let ‘len(‘accessors) = ‘len(‘]).

For alocal tuple accessor list ‘accessors containing ‘l, and an identifier ‘id, let ‘accessors(‘id) = ‘1(‘id).

For a local tuple accessor list ‘accessors containing ‘1, ‘accessors is valid iff ‘ is valid.

Alocal context is exactly one of the following:

° 0

* alocal tuple accessor list

For a local context ‘cl, let ‘len(‘cl) be given by one of the following mutually exclusive cases:

* 0if‘cl=0

* as above if ‘cl is a local tuple accessor list

For a local context ‘cl, and an identifier ‘id, let ‘cl(‘id) be given by one of the following mutually exclusive cases:
e ‘nullif‘cl=0

* as above if ‘cl is a local tuple accessor list

For alocal context ‘cl, the property of ‘cl being valid is given by one of the following mutually exclusive cases:
e If‘cl = 0: ‘clis valid.

 as above if ‘cl is a local tuple accessor list

A global context and a local context are needed to define the normal form of a large function ‘f. The normal form
of ‘fis either a normalized large function or ‘null (indicating that ‘fis invalid).

A normalized local tuple accessor checker contains <‘lis, ‘onFail> where ‘lis is a local tuple accessor list, and
‘onFail is a normalized large function.

For a normalized local tuple accessor checker ‘checker containing <‘lis, ‘onFail>, the list of ‘checker, denoted by
‘lis(‘checker), is ‘lis.

For a normalized local tuple accessor checker ‘checker, let ‘len(‘checker) = ‘len(‘lis(‘checker)).

For a normalized local tuple accessor checker ‘checker containing <‘lis, ‘onFail>, the on fail of ‘checker, denoted
by ‘onFail(‘checker), is ‘onFail.

For a normalized local tuple accessor checker ‘checker, ‘checker is valid iff ‘lis(‘checker) is valid.

A normalized local tuple accessor descriptor is exactly one of the following:

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 81 of 203

* 0
¢ anormalized local tuple accessor checker

For a normalized local tuple accessor descriptor ‘desc, ‘len(‘desc) be given by one of the following mutually exclu-
sive cases:

e O0if‘desc=0
 as above if ‘desc is a normalized local tuple accessor checker

For a normalized local tuple accessor descriptor ‘desc, the property of ‘desc being valid is given by one of the fol-
lowing mutually exclusive cases:

e If ‘desc = 0: ‘desc is valid.
 as above if ‘desc is a normalized local tuple accessor checker

For a normalized local tuple accessor descriptor ‘desc, the local context of ‘desc, denoted by ‘contextLoc(‘desc) is
given by one of the following mutually exclusive cases:

e Oif‘desc=0
e ‘lis(‘desc) if ‘desc is a normalized local tuple accessor checker

For a valid normalized local tuple accessor descriptor ‘desc, ‘contextLoc(‘desc) is valid.

8.14 Normal form of a primitive
For a natural number primitive ‘primNat containing ‘m, the normal form of ‘primNat, denoted by ‘norm(‘primNat),
is ‘norm(‘m).

For a character primitive ‘primChr containing ‘m, the normal form of ‘primChr, denoted by ‘norm(‘primChr), is
‘norm(‘m).

For a string primitive ‘primStr containing 1<xq, X, ..., X¢;,_1>, the normal form of ‘primStr, denoted by
‘norm(‘primStr), is “1{'norm(‘xg) ‘norm(‘xy) ... ‘norm(‘x«m_ L

8.15 Normal form of a normalized constant

For a normalized constant ‘c, the normal form of ‘c, denoted by ‘norm(‘c), is ‘c.

8.16 Normal form of a global name

For a global context ‘cg, and a global name ‘ng containing ‘id, the normal form in ‘cg of ‘ng, denoted by ‘norm(‘cg,
‘ng), is ‘cg(‘id).

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 82 of 203

8.17 Pseudo-NummSquared

In the informal part, for ease of reading, pseudo-NummSquared (similar to NummSquared concrete syntax) hence-
forth represents normalized large functions. For example, in pseudo-NummSquared, a NummSquared identifier
represents the corresponding normalized large function. Of course, pseudo-NummSquared cannot include con-
structs whose normal forms have not yet been defined.

Pseudo-NummSquared may include informal identifiers (for example, ‘%, ‘X, ‘X0 and ‘A.x), which are written as
follows:

To obtain the normalized large functions represented by pseudo-NummSquared, informal identifiers are re-
placed by the things they represent.

In pseudo-NummSquared, confusion between informal identifiers and NummSquared comments is unlikely to
occur.

Informal identifiers are distinct from NummSquared identifiers.

8.18 Normal form of a local name

~left =
~ite(
~Pair
(~1 0)
~null
17

Henceforth, for each definition in pseudo-NummSquared (for example, the definition with name ~1eft), there
is an implicit definition associating the corresponding informal identifier with the corresponding large function ex-
tension (for example, ‘Func.Lg.Ext.left = ‘ext(~1eft)).

For a tagged small function extension ‘), ‘Func.Lg.Ext.left(‘x) = ‘left(‘x) if x is a pair tagged small function exten-
sion; and ‘Func.Sm.Ext.null otherwise.

~right =

~ite|
~Pair
(~1 1)
~null

1;

For a tagged small function extension ‘), ‘Func.Lg.Ext.right(‘x) = right(x) if *x is a pair tagged small function ex-
tension; and ‘Func.Sm.Ext.null otherwise.
For a natural number ‘m, if ‘m = 0:

~left (‘m) = ~left;

For a natural number ‘m, if m=n+ 1:

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 83 of 203

~left (‘m) = [~left('n) ~left];
For a natural number ‘m, if ‘m = 0:
~right (‘m) = ~right;
For a natural number ‘m, if ‘m=‘n+ 1:
~right (‘m) = [~right ~left('n)];

A tuple locator is a pair <‘side, ‘m> where ‘side is a Boolean and ‘m is a natural number.

For a tuple locator ‘tl = <‘side, ‘m>, let ~tuple.by.locator (‘tl) be ~left (‘m) if ‘side =0; and
~right (‘m) otherwise.

For natural numbers ‘m and ‘i such that ‘i < ‘m, let ‘tupleIndexToLocator(‘m, ‘i) be given by one of the following
mutually exclusive cases:

e <0,'m-2>ifi=m-1
e <1,'i>ifi<m-1

The tuple index 0 designates the rightmost component of the tuple.

For natural numbers ‘m and ‘i such that ‘i < ‘m, let ~tuple.by.index ('m ‘i) be
~tuple.by.locator (‘t1l) where ‘1l = ‘tupleIndexToLocator(‘m, ‘i).

For alocal context ‘cl, and a local name ‘nl containing ‘id, the normal form in ‘cl of ‘nl, denoted by ‘norm(‘cl, ‘nl),
is given by one of the following mutually exclusive cases:

e ‘nullif ‘cl(‘id) = ‘null

e If‘cl(‘id) # mull: ~tuple.by.index (‘m ‘i) where ‘m = ‘len(‘cl) and ‘i = ‘cl(‘id)

8.19 Local tuple accessor check

When a definition includes a local tuple accessor checker ‘checker, the normalized large function being defined au-
tomatically checks that its argument is a sufficiently deep tuple. If not, ‘onFail(‘checker) is automatically called.
For a natural number ‘m, if ‘m = 0:

~Tuple(‘m) = ~Pair;
For a natural number ‘m, if m=‘n+ 1:
~Tuple(‘m) = [~Tuple('n) ~left];
For a natural number ‘m, and normalized large functions ‘onFail and ‘f:

~Tuple.check (‘m ‘onFail ‘f) =
~ite[

~Tuple (‘m)

‘£

‘onFail

1;

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 84 of 203

For a normalized local tuple accessor checker ‘checker, and a normalized large function ‘4, let ‘add-
Check(‘checker, f) be ~Tuple.check (‘m ‘onFail ‘f) where ‘m = ‘len(‘checker) - 2 and ‘onFail = ‘on-
Fail(‘checker).

For a normalized local tuple accessor descriptor ‘desc, and a normalized large function ‘f, ‘addCheck(‘desc, f) is
given by one of the following mutually exclusive cases:

e fif‘desc=0
* as above if ‘desc is a normalized local tuple accessor checker

In pseudo-NummSquared, when a definition includes a local tuple accessor checker, ‘addCheck is implicitly ap-
plied.
8.20 Normal form of a computational non-normalized constant or computational combination

For a computational non-normalized constant ‘f, the normal form of ‘f, denoted by ‘norm(‘f), is defined to be the
corresponding normalized large function below.

The normal form of a computational combination ‘f cannot be defined at this point because the normal form of
‘f depends upon the normal forms of the components of ‘f. Instead, the corresponding combination of normalized
large functions is defined.

Corresponding combinations of normalized large functions have already been defined for the following:

* alarge composition computational combination
¢ asmall composition computational combination
¢ atuple computational combination

* alist computational combination

¢ a dependent sum computational combination

¢ a dependent product computational combination
¢ a Curry computational combination

¢ an if-then-else computational combination

e arecursion computational combination

~left and ~right have already been defined.

8.20.1 Confirmation with null

~conf.n =
~ite(

For a tagged small function extension ‘%, ‘Func.Lg.Ext.conf.n(‘x) is x if ‘x is a leaf small function extension; and
‘Func.Sm.Ext.null otherwise.
For a tagged small function extension ‘), ‘Func.Lg.Ext.conf.n(x) = ‘Func.Sm.Ext.Tagged.Leaf.set(‘x).

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 85 of 203

8.20.2 Negation with null

~not.n =
~ite|
~1

0

1;

For a tagged small function extension ‘%, ‘Func.Lg.Ext.not.n(‘x) is given by one of the following mutually exclusive
cases:

¢ ‘Func.Sm.Ext.one if x = ‘Func.Sm.Ext.zero
¢ ‘Func.Sm.Ext.zero if ‘x = ‘Func.Sm.Ext.one

¢ ‘Func.Sm.Ext.null if ‘x is not Boolean

8.20.3 Null to zero

~Null.to.Zero =
~ite]

~Null

0

~1

1

For a tagged small function extension ‘%, ‘Func.Lg.Ext.Null.to.Zero(‘x) = ‘Func.Sm.Ext.zero if x =
‘Func.Sm.Ext.null; and x otherwise.

8.20.4 Kind predicates

~72ero = [~Null.to.Zero ~not.n];

For a tagged small function extension ‘%, ‘Func.Lg.Ext.Zero(x) = ‘Func.Sm.Ext.one if x = ‘Func.Sm.Ext.zero; and
‘Func.Sm.Ext.zero otherwise.

~One = [~Null.to.Zero ~conf.n];

For a tagged small function extension ‘%, ‘Func.Lg.Ext.One(‘x) = ‘Func.Sm.Ext.one if x = ‘Func.Sm.Ext.one; and
‘Func.Sm.Ext.zero otherwise.

For a tagged small function extension ‘%, ‘Func.Lg.Ext.One(‘x) is a Boolean, and ‘Func.Lg.Ext.One(‘x) is true iff x is
true.

For a tagged small function extension ‘), ‘Func.Lg.Ext.One(x) = ‘Func.Lg.Ext.conf.n(‘Func.Sm.Ext.one) if x =
‘Func.Sm.Ext.one; and ‘Func.Lg.Ext.conf.n(‘Func.Sm.Ext.zero) otherwise.

~Nuro =
~ite]|
~Null

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 86 of 203

~7ero

1

For a tagged small function extension ‘), ‘Func.Lg.Ext.Nuro(‘)) = ‘Func.Sm.Ext.one if ‘x is a nuro; and
‘Func.Sm.Ext.zero otherwise.

~Boo =

~ite(
~72ero
1
~One

1

For a tagged small function extension ‘%, ‘Func.Lg.Ext.Boo(‘x) = ‘Func.Sm.Ext.one if x is a Boolean; and
‘Func.Sm.Ext.zero otherwise.

~Leaf =

~ite|
~Nuro
1
~One

1i

For a tagged small function extension ‘%, ‘Func.Lg.Ext.Leaf(‘x) = ‘Func.Sm.Ext.one if ‘x is a leaf small function ex-
tension; and ‘Func.Sm.Ext.zero otherwise.

~Simp =

~ite]
~Leaf
1
~Pair

1

For a tagged small function extension ‘), ‘Func.Lg.Ext.Simp(‘x) = ‘Func.Sm.Ext.one if x is a simple tagged small
function extension; and ‘Func.Sm.Ext.zero otherwise.

~Rule = [~not.n ~Simp];

For a tagged small function extension ‘%, ‘Func.Lg.Ext.Rule(‘x) = ‘Func.Sm.Ext.one if ‘x is a rule tagged small func-
tion extension; and ‘Func.Sm.Ext.zero otherwise.

8.20.5 Tree predicate

~Tree.step.pair {%r.dom %r.ran %func} =
~ite(

($r.ran 0)

[~conf.n ($3r.ran 1)]

0
17

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 87 of 203

For a tagged small function extension x = {r.dom, ‘r.ran, ‘func}, ‘Func.Lg.Ext.Tree.step.pair(‘x) is given by one of
the following mutually exclusive cases:

* ‘Func.Lg.Ext.conf.n(r.ran(‘Func.Sm.Ext.one)) if ‘r.ran(‘Func.Sm.Ext.zero) = ‘Func.Sm.Ext.one
¢ ‘Func.Sm.Ext.zero if r.ran(‘Func.Sm.Ext.zero) = ‘Func.Sm.Ext.zero

¢ ‘Func.Sm.Ext.null if ‘r.ran(‘Func.Sm.Ext.zero) is not Boolean

~Tree.step {%r.dom %r.ran %func} =

~ite[
[~Leaf %func]
1
~ite|
[~Pair %func]
~Tree.step.pair
011;

For a tagged small function extension x = {r.dom, ‘r.ran, ‘func}, ‘Func.Lg.Ext.Tree.step(‘x) is given by one of the
following mutually exclusive cases:

* ‘Func.Sm.Ext.one if ‘func is a leaf small function extension
* ‘Func.Lg.Ext.Tree.step.pair(‘x) if ‘func is a pair tagged small function extension

* ‘Func.Sm.Ext.zero if ‘func is a rule tagged small function extension
~Tree = ~r[l ~Tree.step];

For a tagged small function extension ‘), ‘Func.Lg.Ext.Tree(‘x) is given by one of the following mutually exclusive
cases:

¢ If xis a leaf small function extension: ‘Func.Lg.Ext.Tree(x) = ‘Func.Sm.Ext.one.

 If x is a pair tagged small function extension: ‘Func.Lg.Ext.Tree(‘x) is given by one of the following mutually
exclusive cases:

— ‘Func.Lg.Ext.conf.n(‘Func.Lg.Ext.Tree(‘right(‘x))) if ‘Func.Lg.Ext.Tree(‘left(‘x)) = ‘Func.Sm.Ext.one
— ‘Func.Sm.Ext.zero if ‘Func.Lg.Ext.Tree(‘left(x)) = ‘Func.Sm.Ext.zero

— ‘Func.Sm.Ext.null if ‘Func.Lg.Ext.Tree(‘left(‘x)) is not Boolean
e If xis a rule tagged small function extension: ‘Func.Lg.Ext.Tree(x) = ‘Func.Sm.Ext.zero.
Proof.
e If x = ‘Func.Sm.Ext.null: ‘Func.Lg.Ext.Tree(‘x) = ‘Func.Sm.Ext.one.
e If'x # ‘Func.Sm.Ext.null: ‘Func.Lg.Ext.Tree(‘x) = ‘Func.Lg.Ext.Tree.step({TDom, TRan, ‘x}) where:

- ‘rDom is the rule tagged small function extension such that ‘domExt(TDom) = ‘domExt(‘x) and, for each
for each ‘dom(rDom) program ‘y, TDom<‘y> = ‘Func.Lg.Ext.Tree(‘tagged(‘rDom, ‘y)).

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 88 of 203

— ‘TRan is the rule tagged small function extension such that ‘domExt(‘rRan) = ‘domExt(‘x) and, for each
‘dom(‘rRan) program ‘y, ‘rRan<‘y> = ‘Func.Lg.Ext.Tree(‘x(‘tagged(‘rRan, ‘y))). O

For a tagged small function extension ‘%, ‘Func.Lg.Ext.Tree(‘x) = ‘Func.Sm.Ext.one if x is a tree; and
‘Func.Sm.Ext.zero otherwise.

Proof.
* Byinduction on ‘x.
¢ Holds if x is a leaf small function extension.

* If 'x is a pair tagged small function extension: ‘Func.Lg.Ext.Tree(‘left(‘x)) = ‘Func.Sm.Ext.one if ‘left(‘x) is a tree;
and ‘Func.Sm.Ext.zero otherwise (by inductive hypothesis). ‘Func.Lg.Ext.Tree(‘right(‘x)) = ‘Func.Sm.Ext.one
if ‘right(‘x) is a tree; and ‘Func.Sm.Ext.zero otherwise (by inductive hypothesis). ‘Func.Lg.Ext.Tree(‘x) is
‘Func.Sm.Ext.one if ‘left(‘x) and ‘right(‘x) are trees; and ‘Func.Sm.Ext.zero otherwise.

* Holds if x is a rule tagged small function extension. O

8.20.6 Result

~res {%$func %arg} = (%func %arqg);

For a tagged small function extension ‘x = {‘func, ‘arg}, ‘Func.Lg.Ext.res(‘x) = ‘func(‘arg).

8.20.7 Restrict

For a normalized large function ‘unrestrict:
~restrict [‘unrestrict] = ~c[[‘unrestrict ~right] ~il;

For a definition in pseudo-NummSquared that is parameterized by a normalized large function (for example,
~restrict [‘unrestrict] parameterized by the normalized large function ‘unrestrict), the corresponding im-
plicit definition associating the corresponding informal identifier with the corresponding large function extension is
parameterized by a large function extension (for example, “restrict[‘unrestrict] parameterized by the large function
extension ‘unrestrict).

For a large function extension ‘unrestrict, and a tagged small function extension ‘x, “restrict[‘unrestrict] (‘x) is the
rule tagged small function extension ‘T such that ‘domExt(‘r) = ‘domExt(‘x) and, for each ‘dom(‘r) program ‘y, r<‘y> =
‘unrestrict(‘tagged(‘r, ‘v)).

Proof. “restrict[‘unrestrict] (x) is the rule tagged small function extension ‘r such that ‘domExt(‘r) = ‘domExt(x) and,
for each ‘dom(‘r) program ‘y, ‘r<‘y> = [‘unrestrict ‘Func.Lg.Ext.right] ({*x, ‘tagged(‘T, ‘y)}) = ‘unrestrict(‘tagged(‘r, ‘y)).

O
8.20.8 Restrict to range

For a normalized large function ‘unrestrict:

~restrict.ran[‘unrestrict] = ~c[[‘unrestrict ~res] ~i];

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 89 of 203

For a large function extension ‘unrestrict, and a tagged small function extension ‘x, “restrict.ran[‘unrestrict] (‘x)
is the rule tagged small function extension ‘r such that ‘domExt(‘r) = ‘domExt(x) and, for each ‘dom(‘r) program ‘y,
‘r<‘y> = ‘unrestrict(‘x(‘tagged(T, ‘y))) = ‘unrestrict(‘x<‘y>).

Proof. “restrict.ran[‘unrestrict](‘x) is the rule tagged small function extension ‘r such that ‘domExt(‘r) = ‘domExt(‘x)
and, for each ‘dom(‘r) program ‘y, T<‘y> = [‘unrestrict ‘Func.Lg.Ext.res] ({x, ‘tagged(‘r, ‘v)}) = ‘unrestrict(‘x(‘tagged(‘r,
‘). O

8.20.9 Nuro set result

~Nuro.set.res =
~ite|

~1i

~null

0
1;

For a tagged small function extension ‘%, ‘Func.Lg.Ext.Nuro.set.res(‘x) is x if x is a nuro; and ‘Func.Sm.Ext.null
otherwise.

For a tagged small function extension ‘%, ‘Func.Lg.Ext.Nuro.set.res(‘x) = ‘Func.Sm.Ext.Tagged.Nuro.set(‘x).

For a tagged small function extension ‘%, ‘Func.Lg.Ext.Nuro.set.res(‘x) = ‘Func.Sm.Ext.one(‘x).

8.20.10 Tree set result

~Tree.set.res =
~ite|

~Tree

~1

~null

1i

For a tagged small function extension ‘%, ‘Func.Lg.Ext.Tree.set.res(‘x) is x if x is a tree; and ‘Func.Sm.Ext.null oth-
erwise.
For a tagged small function extension ‘%, ‘Func.Lg.Ext.Tree.set.res(x) = ‘Func.Sm.Ext.Tagged.Tree.set(‘x).

8.20.11 Dependent sum result

~s.d.res.left {%family %pair} =

~ite]|
[~Pair S%pair]
([~dom S&family] [~left S%Spair])
~null

1

For a tagged small function extension ‘x = {‘family, ‘pair}, ‘Func.Lg.Ext.s.d.res.left(‘x) is ‘dom-
FuncExt(‘family) (‘left(‘pair)) if ‘pair is a pair tagged small function extension; and ‘Func.Sm.Ext.null otherwise.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 90 of 203

~s.d.res.right {%family S%pair} =

~ite(
[~Pair Spair]
([~dom ($family ~s.d.res.left)] [~right $%pair])

~null
1;

For a tagged small function extension ‘x = {‘family, ‘pair}, ‘Func.Lg.Ext.s.d.res.right(x) is ‘dom-
FuncExt(‘family(‘Func.Lg.Ext.s.d.res.left(x))) (‘right(‘pair)) if ‘pair is a pair tagged small function extension; and
‘Func.Sm.Ext.null otherwise.

~s.d.res {%$family S%pair} =

~ite[
[~Pair Spair]
{~s.d.res.left ~s.d.res.right}
~null

1

For a tagged small function extension ‘x = {‘family, ‘pair}, ‘Func.Lg.Ext.s.d.res(‘x) is {‘Func.Lg.Ext.s.d.res.left(‘x),
‘Func.Lg.Ext.s.d.res.right(x)} if ‘pair is a pair tagged small function extension; and ‘Func.Sm.Ext.null otherwise.
For a tagged small function extension ‘x = {‘family, ‘pair}, ‘Func.Lg.Ext.s.d.res(‘x) = ‘sumDep(‘family) (‘pair).

Proof.

e If ‘pair is a pair tagged small function extension: ‘Func.Lg.Ext.s.d.res(‘x) is the pair tagged small
function extension ‘p such that ‘left(‘p) = ‘domFuncExt(‘family) (‘left(‘pair)) and ‘right(‘p) = ‘dom-
FuncExt(‘family(‘left(‘p))) (‘right(‘pair)).

e If ‘pair is not a pair tagged small function extension: ‘Func.Lg.Ext.s.d.res(x) = ‘Func.Sm.Ext.null. O

8.20.12 Dependent product result

~p.d.res.rule.uncurry {%$family %rule %arg} =
([~dom (%family %arqg)] (%rule %arg));

For a tagged small function extension ‘x = {‘family, ‘rule, ‘arg}, ‘Func.Lg.Ext.p.d.res.rule.uncurry(‘x) = ‘dom-
FuncExt(‘family(‘arg)) (‘rule(‘arg)).

~p.d.res.rule {$family %rule} =
~c[~p.d.res.rule.uncurry S%Sfamily];

For a tagged small function extension x = {‘family, ‘rule}, ‘Func.Lg.Ext.p.d.res.rule(‘x) is the rule tagged small
function extension T such that ‘domExt(‘r) = ‘domExt(‘family) and, for each ‘dom(‘r) program program ‘y, 1<‘y> =
‘Func.Lg.Ext.p.d.res.rule.uncurry({ family, rule, ‘tagged(‘r, ‘y)}).

For a tagged small function extension ‘x = {‘family, ‘rule}, if ‘rule is a rule tagged small function extension, then
‘Func.Lg.Ext.p.d.res.rule(‘x) = ‘prodDep(‘family) (‘rule).

Proof. ‘Func.Lg.Ext.p.d.res.rule(‘x) is the rule tagged small function extension ‘T such that ‘domExt(‘r)
= ‘domExt(‘family) and, for each ‘dom(‘r) program program ‘y, 1<‘y> = ‘domFuncExt(‘family(‘tagged(‘r,
‘Y)) (‘rule(‘tagged(T, ‘v))). O

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 91 of 203

~p.d.res {%$family %rule} =
~ite(
[~Rule %rule]
~p.d.res.rule
~null

1;

For a tagged small function extension ‘x = {‘family, ‘rule}, ‘Func.Lg.Ext.p.d.res(x) is ‘Func.Lg.Ext.p.d.res.rule(x) if
‘rule is a rule tagged small function extension; and ‘Func.Sm.Ext.null otherwise.
For a tagged small function extension x = {‘family, ‘rule}, ‘Func.Lg.Ext.p.d.res(x) = ‘prodDep(‘family)(‘rule).

Proof.
e If rule is a rule tagged small function extension: ‘Func.Lg.Ext.p.d.res(x) = ‘Func.Lg.Ext.p.d.res.rule(‘x).

e If ‘rule is not a rule tagged small function extension: ‘Func.Lg.Ext.p.d.res(‘x) = ‘Func.Sm.Ext.null. O

8.20.13 Curry augmented

For normalized large functions ‘uncurry and ‘augmentor:

~c.aug.uncurry[‘uncurry ‘augmentor] {%x Sy} =
[‘uncurry [‘augmentor %x] 5%yl;

For large function extensions ‘uncurry and ‘augmentor, and a tagged small function extension ‘z = {'x, ‘y},
“c.aug.uncurry[‘uncurry ‘augmentor](‘z) = ‘uncurry({‘augmentor(‘x), ‘y}).
For normalized large functions ‘uncurry, ‘restrictor and ‘augmentor:

~c.aug[‘uncurry ‘restrictor ‘augmentor] =
NC[
~c.aug.uncurry[‘uncurry ‘augmentor]
[‘restrictor ‘augmentor]

1

For large function extensions ‘uncurry, ‘restrictor and ‘augmentor, and a tagged small function extension ‘,
“c.aug[‘uncurry ‘Testrictor ‘augmentor](‘x) is the rule tagged small function extension ‘r such that ‘domExt(‘r) =
‘domExt(‘restrictor(‘augmentor(‘x))) and, for each ‘dom(‘r) program ‘y, ‘r<‘y> = “c.aug.uncurry|[‘uncurry ‘augmen-
tor] ({*x, ‘tagged(‘r, ‘y)}) = ‘uncurry({‘augmentor(‘x), ‘tagged(‘r, ‘y)}).

For large function extensions ‘uncurry, ‘restrictor and ‘augmentor, and a tagged small function extension ‘%,
“c.aug[‘uncurry Testrictor ‘augmentor](‘x) = ["c[‘uncurry ‘Testrictor] ‘augmentor](‘x).

Proof. ["cl[‘uncurry ‘restrictor] ‘augmentor](‘x) = “c[‘uncurry ‘restrictor] (‘augmentor(‘x)) is the rule tagged small func-
tion extension ‘r such that ‘domExt(‘r) = ‘domExt(‘restrictor(‘augmentor(‘x))) and, for each ‘dom(‘r) program program
y, 1<‘y> = ‘uncurry({‘augmentor(‘x), ‘tagged(‘r, ‘y)}). O

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 92 of 203

8.20.14 Curry result

For a normalized large function ‘uncurry:

~c.res[‘uncurry] {%$x %restrictor %y}
[

[‘“uncurry %x ([~dom %restrictor] sy) 1;

For a large function extension ‘uncurry, and a tagged small function extension ‘z = {‘x, ‘restrictor, ‘y},
“c.res[‘uncurry](‘z) = ‘uncurry({x, ‘domFuncExt(‘restrictor) (‘y)}).

8.20.15 Recursion right-hand-side

For normalized large functions ‘start and ‘step:
~r.dom[‘start ‘step] = ~restrict[~r[‘start ‘stepll];

For large function extensions ‘start and ‘step, and a tagged small function extension ‘%, “'r.dom|‘start ‘step](x) is
the rule tagged small function extension ‘T such that ‘domExt(‘r) = ‘domExt(‘x) and, for each ‘dom(‘r) program pro-
gram ‘y, ‘r<‘y> = "r[‘start ‘step] (‘tagged(‘r, ‘y)).

For normalized large functions ‘start and ‘step:

~r.ran|[‘start ‘step] = ~restrict.ran[~r[‘start ‘stepll];

For large function extensions ‘start and ‘step, and a tagged small function extension ‘%, “r.ran[‘start ‘step](‘x) is the
rule tagged small function extension ‘r such that ‘domExt(‘r) = ‘domExt(x) and, for each ‘dom(‘r) program ‘y, 1<‘y> =
“r[‘start ‘step] (x(‘tagged(T, ‘v))).

For normalized large functions ‘start and ‘step:

~r.stepl ‘start ‘step] =
[‘step ~r.dom[‘start ‘step] ~r.ran| ‘start ‘step] ~il;

For large function extensions ‘start and ‘step, and a tagged small function extension ‘x, “r.step|‘start ‘step](x) =
‘step({"r.dom|‘start ‘step](‘x), “r.ran|‘start ‘step](‘x), x}).
For normalized large functions ‘start and ‘step:

~r.rhs[‘start ‘step] =
~ite(

~Null

‘start

~r.step|[‘start ‘step]
17

For large function extensions ‘start and ‘step, and a tagged small function extension ‘%, “r.rhs[‘start ‘step](‘x) =
‘start(‘x) if x = ‘Func.Sm.Ext.null; and “r.step[‘start ‘step] (‘’x) otherwise.

For large function extensions ‘start and ‘step, and a tagged small function extension ‘), “r.rhs[‘start ‘step] (‘x) =
“r[‘start ‘step] (‘x).

8.20.16 Negation

~not = [~not.n ~One];

For a tagged small function extension ‘%, ‘Func.Lg.Ext.not(‘x) = ‘Func.Lg.Ext.not.n(‘Func.Lg.Ext.One(x)).
For a tagged small function extension ‘), ‘Func.Lg.Ext.not(‘x) = ‘Func.Sm.Ext.zero if x is true; and
‘Func.Sm.Ext.one otherwise.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 93 of 203

8.20.17 Implication with null

~imp.n {%b %c} =
~ite|

%b

[~conf.n %c]
1

1;

For a tagged small function extension ‘x = {'b, ‘c}, ‘Func.Lg.Ext.imp.n()) is given by one of the following mutually
exclusive cases:

¢ ‘Func.Sm.Ex.one if ‘b = ‘Func.Sm.Ext.zero
e ‘Func.Lg.Ext.conf.n(‘c) if ‘b = ‘Func.Sm.Ext.one

¢ ‘Func.Sm.Ext.null if ‘b is not Boolean

8.20.18 Implication
~imp {%b %c} = [~imp.n [~One $%Db] [~One %c]];

For a tagged small function extension x = {‘b, ‘c}, ‘Func.Lg.Ext.imp(‘x) = ‘Func.Lg.Ext.imp.n({‘Func.Lg.Ext.One(‘b),
‘Func.Lg.Ext.One(‘c)}).

For a tagged small function extension x = {‘b, ‘c}, ‘Func.Lg.Ext.imp(‘x) is ‘Func.Lg.Ext.One(‘c) if ‘b is true; and
‘Func.Sm.Ext.one otherwise.

8.21 Normal form of a non-computational non-normalized constant or non-computational combina-
tion

For a non-computational non-normalized constant ‘f, the normal form of f, denoted by ‘norm(‘f), is defined to be
the corresponding normalized large function below.

The normal form of a non-computational combination ‘f cannot be defined at this point because the normal
form of ‘f depends upon the normal forms of the components of ‘f. Instead, the corresponding combination of nor-
malized large functions is defined.

Corresponding combinations of normalized large functions have already been defined for the following:

¢ a Hilbert non-computational combination

8.21.1 Existential quantification

Existential quantification is now defined using Hilbert in a manner somewhat similar to [4].
For a normalized large function ‘pred:

~exist [‘pred] = [~One [‘pred ~i ~h[‘pred]] 1;

For a large function extension ‘pred, and a tagged small function extension ‘x, “exist[‘pred] (‘x) = ‘Func.Lg.Ext.One(
‘pred({x, "h[‘pred] (x)})).

For a large function extension ‘pred, and a tagged small function extension ‘x, “exist[‘pred] (‘x) is ‘Func.Sm.Ext.one
if there exists some tagged small function extension ‘y such that ‘pred({x, ‘y}) is true; and ‘Func.Sm.Ext.zero other-
wise.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 94 of 203

Proof.

* If there exists some tagged small function extension ‘y such that ‘pred({x, ‘y}) is true: “h[‘pred](‘x) is some
tagged small function extension ‘y such that ‘pred({'x, ‘y}) is true. “exist[‘pred] (‘x) = ‘Func.Lg.Ext.One(‘pred({‘x,
v}) = ‘Func.Sm.Ext.one.

e If there does not exist some tagged small function extension ‘y such that ‘pred({x, ‘y}) is true: ‘pred({‘x,
“h[‘pred](x)}) # ‘Func.Sm.Ext.one. O

8.21.2 Universal quantification

Universal quantification is now defined using existential quantification in a manner similar to [9, p.34].
For a normalized large function ‘pred:

~not.all[‘pred] = ~exist[[~not ‘pred]l];

For a large function extension ‘pred, and a tagged small function extension ‘x, "not.all[‘pred] () is
‘Func.Sm.Ext.zero if, for each tagged small function extension ‘y, ‘pred({'x, ‘y}) is true; and ‘Func.Sm.Ext.one other-
wise.

Proof. "not.all[‘pred](‘x) is ‘Func.Sm.Ext.one if there exists some tagged small function extension ‘y such that

[‘Func.Lg.Ext.not ‘pred] ({x, ‘v}) is true; and ‘Func.Sm.Ext.zero otherwise. "not.all[‘pred](‘x) is ‘Func.Sm.Ext.one if

there exists some tagged small function extension ‘y such that ‘pred({x, ‘y}) is not true; and ‘Func.Sm.Ext.zero other-

wise. O
For a normalized large function ‘pred:

~all[‘pred] = [~not ~not.all[‘pred]l];

For a large function extension ‘pred, and a tagged small function extension ‘x, ~all[‘pred](‘x) is ‘Func.Sm.Ext.one
if, for each tagged small function extension ‘y, ‘pred({x, ‘y}) is true; and ‘Func.Sm.Ext.zero otherwise.

8.21.3 Unary universal quantification

For a normalized large function ‘pred:
~all.unal ‘pred] = ~all[[‘pred ~right]];

For a large function extension ‘pred, and a tagged small function extension ‘x, “all.unal‘pred](‘x) is
‘Func.Sm.Ext.one if, for each tagged small function extension ‘y, ‘pred(‘y) is true; and ‘Func.Sm.Ext.zero otherwise.

For a large function extension ‘pred, and a tagged small function extension ‘x, “all.unal‘pred](‘x) is
‘Func.Sm.Ext.one if ‘pred is true; and ‘Func.Sm.Ext.zero otherwise.

For a large function extension ‘pred, ~all.una|‘pred] is unchanging.

8.21.4 Small universal quantification
~all.sm = ~all[~res];

For a tagged small function extension ‘%, ‘Func.Lg.Ext.all.sm(‘x) is ‘Func.Sm.Ext.one if, for each tagged small func-
tion extension ‘y, ‘x(‘y) is true; and ‘Func.Sm.Ext.zero otherwise.

For a tagged small function extension ‘%, ‘Func.Lg.Ext.all.sm(‘x) is ‘Func.Sm.Ext.one if x is universally true; and
‘Func.Sm.Ext.zero otherwise.

For a tagged small function extension ‘), ‘Func.Lg.Ext.all.sm(x) is ‘Func.Sm.Ext.one if, for each ‘dom(x) program
y, ‘x(‘tagged(‘x, ‘y)) = ‘x<‘y> is true; and ‘Func.Sm.Ext.zero otherwise.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 95 of 203

8.21.5 Equals right-hand-side

~=.pair {%x %y} =
~ite|
[~Palr %x]
~ite[
[~Pair %y]

~ite|
[~= [~left %x] [~left Sy]]
[~= [~right %x] [~right %y]]
0
]
~null
]
~null

1;

For a tagged small function extension ‘z = {'x, ‘y}, ‘Func.Lg.Ext.eq.pair(‘z) is given by one of the following mutually
exclusive cases:

 If xand ‘y are both pair tagged small function extensions: ‘Func.Lg.Ext.eq.pair(‘z) is ‘Func.Sm.Ext.one if
‘left(‘x) = ‘left(‘y) and ‘right(‘x) = right(‘y); and ‘Func.Sm.Ext.zero otherwise.

* ‘Func.Sm.Ext.null if x and ‘y are not both pair tagged small function extensions

For a tagged small function extension ‘z = {'x, ‘y}, if ‘x and ‘y are pair tagged small function extensions, then
‘Func.Lg.Ext.eq.pair(‘z) is ‘Func.Sm.Ext.one if x = ‘y; and ‘Func.Sm.Ext.zero otherwise.

~=.res.at {%x %y %arg} = [~= (3x %arqg) (3y %arqg)];

For a tagged small function extension ‘z = {'x, ‘y, ‘arg}, ‘Func.Lg.Ext.eq.res.at(‘z) is ‘Func.Sm.Ext.one if x(‘arg) =
‘y(‘arg); and ‘Func.Sm.Ext.zero otherwise.

~=.res {%x %y} = ~all[~=.res.at];

For a tagged small function extension ‘z = {'x, ‘y}, ‘Func.Lg.Ext.eq.res(‘z) is ‘Func.Sm.Ext.one if, for each tagged
small function extension ‘w, ‘Func.Lg.Ext.eq.res.at({'x, ‘y, ‘w}) is true; and ‘Func.Sm.Ext.zero otherwise.

For a tagged small function extension ‘z = {'x, ‘y}, ‘Func.Lg.Ext.eq.res(‘z) is ‘Func.Sm.Ext.one if, for each tagged
small function extension ‘w, ‘x(‘w) = ‘y(‘w); and ‘Func.Sm.Ext.zero otherwise.

~=.dom.res {%x %y} = [~=.res [~dom %x] [~dom S%y]];

For a tagged small function extension ‘z = {'x, ‘y}, ‘Func.Lg.Ext.eq.dom.res(‘z) is ‘Func.Sm.Ext.one if, for each
tagged small function extension ‘w, ‘domFuncExt(x) (‘w) = ‘domFuncExt(‘y) (‘w); and ‘Func.Sm.Ext.zero otherwise.

~=.both.res {%x %y} =
~ite(

~=.dom.res

~=.res

0
17

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 96 of 203

For a tagged small function extension ‘z = {x, ‘y}, ‘Func.Lg.Ext.eq.both.res(‘z) is ‘Func.Sm.Ext.one if, for
each tagged small function extension ‘w, ‘domFuncExt(‘x) (‘w) = ‘domFuncExt(‘y) (‘w) and x(‘w) = ‘y(‘w); and
‘Func.Sm.Ext.zero otherwise.

For a tagged small function extension ‘z = {'x, ‘v}, if ‘x and ‘y are rule tagged small function extensions, then
‘Func.Lg.Ext.eq.both.res(‘z) is ‘Func.Sm.Ext.one if x = ‘y; and ‘Func.Sm.Ext.zero otherwise.

~=.rhs {%x %y} =

~ite|
[~Null %x]
[~Null %y]
~itel
[~Zero %x]
[~Zero %y
~ite]
[~One %x]
[~One %yl
~ite|
[~Pair %x]
~ite[
[~Pair %vy]
~=.pair
0
]
~ite|
[~Rule %y]
~=.both.res
0

For a tagged small function extension ‘p, ‘Func.Lg.Ext.eq.rhs(‘p) is given by one of the following mutually exclu-
sive cases:

e ‘Func.Sm.Ext.one if ‘p is a pair tagged small function extension, and ‘left(‘p) = ‘right(‘p)
e ‘Func.Sm.Ext.zero if ‘p is a pair tagged small function extension, and ‘left(‘p) # ‘right(‘p)
e ‘Func.Sm.Ext.null if ‘p is not a pair tagged small function extension

For a tagged small function extension ‘p, ‘Func.Lg.Ext.eq.rhs(‘p) = ‘Func.Lg.Ext.eq(‘p).

8.21.6 Not equals

~not.= = {%x %y} [~not ~=];

For a tagged small function extension ‘z = {'x, ‘y}, ‘Func.Lg.Ext.not.eq(x) = ‘Func.Sm.Ext.zero if x = ‘y; and
‘Func.Sm.Ext.one otherwise.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 97 of 203

8.21.7 Inductive case

Recall that, for a small function extension ‘f # ‘Func.Sm.Ext.null, and a ‘field(‘f) program ‘%, ‘x is structurally smaller
than ‘f. This fact permits a simple induction principle for NummSquared, complementing the terminating recursion
principle.

For a normalized large function ‘pred:

~induc.hyp.dom|[‘pred] = [~all.sm ~restrict|‘pred]];

For a large function extension ‘pred, and a tagged small function extension ‘x, “induc.hyp.dom|[‘pred] (x) =
‘Func.Lg.Ext.all.sm("restrict[‘pred] (‘x)).

For a large function extension ‘pred, and a tagged small function extension ‘x, “induc.hyp.dom|[‘pred] (‘x) is
‘Func.Sm.Ext.one if, for each ‘dom(‘x) program ‘y, ‘pred(‘tagged(‘x, ‘y)) is true; and ‘Func.Sm.Ext.zero otherwise.

Proof. “induc.hyp.dom|‘pred](‘x) is ‘Func.Sm.Ext.one if, for each ‘dom("restrict[‘pred](x)) program ‘y,

“restrict[‘pred] (‘’x) <‘y> is true; and ‘Func.Sm.Ext.zero otherwise. “restrict[‘pred](x) is the rule tagged small function

extension ‘r such that ‘domExt(‘r) = ‘domExt(x) and, for each ‘dom(‘r) program ‘y, ‘r<‘y> = ‘pred(‘tagged(‘r, ‘y)). O
For a normalized large function ‘pred:

~induc.hyp.ran| ‘pred] = [~all.sm ~restrict.ran| ‘pred]];

For a large function extension ‘pred, and a tagged small function extension ‘%, “induc.hyp.ran[‘pred](‘x) =
‘Func.Lg.Ext.all.sm("restrict.ran|‘pred] (‘x)).

For a large function extension ‘pred, and a tagged small function extension ‘x, “induc.hyp.ran[‘pred] (‘x)
is ‘Func.Sm.Ext.one if, for each ‘dom(‘x) program ‘y, ‘pred(‘x(‘tagged('x, ‘y))) = ‘pred(x<‘y>) is true; and
‘Func.Sm.Ext.zero otherwise.

Proof. “induc.hyp.ran[‘pred](‘x) is ‘Func.Sm.Ext.one if, for each ‘dom("restrict.ran[‘pred](x)) program ‘,

“restrict.ran|‘pred] (x) <‘y> is true; and ‘Func.Sm.Ext.zero otherwise. “restrict.ran|‘pred](‘x) is the rule tagged

small function extension ‘T such that ‘domExt(‘r) = ‘domExt(‘x) and, for each ‘dom(‘r) program ‘y, r<‘y> =

‘pred(‘x(‘tagged(T, ‘y))). O
For a normalized large function ‘pred:

~induc.case.at [‘pred] =
[~imp
~induc.hyp.dom|[‘pred]
[~imp
~induc.hyp.ran| ‘pred]
‘pred
117

For a large function extension ‘pred, and a tagged small function extension ‘%, “induc.case.at[‘pred] (%) is
‘Func.Lg.Ext.One(‘pred(‘x)) if “induc.hyp.dom|‘pred](‘x) and “induc.hyp.ran[‘pred](‘x) are true; and ‘Func.Sm.Ext.one
otherwise.

For a normalized large function ‘pred:

~induc.case[‘pred] = ~all.una[~induc.case.at|[‘pred]l];

For a large function extension ‘pred, and a tagged small function extension ‘%, “induc.case|‘pred](x) is
‘Func.Sm.Ext.one if “induc.case.at[‘pred] is true; and ‘Func.Sm.Ext.zero otherwise.

For a large function extension ‘pred, “induc.case[‘pred] is unchanging.

The induction principle itself is given along with other true large function extensions.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 98 of 203

8.22 Normal form and validity of a large function

For a global context ‘cg, a local context ‘cl, and a large function ‘f, the normal form in ‘cg and ‘cl of ‘f (a normalized
large function or ‘null), denoted by ‘norm(‘cg, ‘cl, f), is defined by recursion on ‘f:

e ‘norm(f) if ‘fis a primitive
e ‘norm(f) if ‘fis a constant

* ‘nullif T= [‘'outer X X7 ... X¢,.1] and at least one of ‘norm(‘cg, ‘cl, ‘outer), ‘norm(‘cg, ‘cl, xg), norm(‘cg, ‘cl,
X1), ..., norm(‘cg, ‘cl, ‘X‘m-l) is ‘null

* [norm(‘cg, ‘cl, ‘outer) ‘norm(‘cg, ‘cl, xg) ‘norm(‘cg, ‘cl, x1) ... ‘norm(‘cg, ‘cl, ‘xfm_l)] if f= [‘outer X X7 ...
‘x«m_l] and all of ‘norm(‘cg, ‘cl, ‘outer), ‘norm(‘cg, ‘cl, xg), norm(‘cg, ‘cl, x7), ..., ‘norm(‘cg, ‘cl, ‘X‘m-l) are #
‘null

e The other combination cases are similar and are omitted.

* ‘norm(‘cg, ‘f) if fis a global name

e norm(‘cl, f) if fis alocal name

e ‘null if f= "C[‘called] and ‘norm(‘cg, ‘cl, ‘called) = ‘null

* ‘computed(‘norm(‘cg, ‘cl, ‘called)) if ‘f = "C[‘called] and ‘norm(‘cg, ‘cl, ‘called) # null

e ‘null if f="Q[‘unquoted] and ‘norm(‘cg, ‘cl, ‘unquoted) = ‘null

* ‘quoted(‘norm(‘cg, ‘cl, ‘unquoted)) if ‘f = “Q[‘unquoted] and ‘norm(‘cg, ‘cl, ‘unquoted) # ‘null
e ‘nullif f="UQ[‘quoted] and ‘norm(‘cg, ‘cl, ‘quoted) = ‘null

* ‘unquoted(norm(‘cg, ‘cl, ‘quoted)) if ‘f="UQ[‘quoted] and ‘norm(‘cg, ‘cl, ‘quoted) # ‘null

 ‘nullif f=#called[)(X ... X4y,.1] and at least one of ‘norm(‘cg, ‘cl, ‘called), ‘norm(‘cg, ‘cl, xg), ‘norm(‘cg, ‘cl,
X1), ..., ‘norm(‘cg, ‘cl, ‘X‘m-l) is ‘null

* ‘macroExpanded(‘norm(‘cg, ‘cl, ‘called), I<‘norm(‘cg, ‘cl, xp), ‘norm(‘cg, ‘cl, xy), ..., norm(‘cg, ‘cl, ‘X‘m-1)>) if f
=#‘called['x(X] ... X4y,.1] and all of ‘norm(‘cg, ‘cl, ‘called), ‘norm(‘cg, ‘cl, x), ‘norm(‘cg, ‘cl, xy), ..., norm(‘cg,
‘cl, ‘X‘m-l) are # ‘null

For a global context ‘cg, a local context ‘cl, and a large function , fis valid in ‘cg and ‘cl iff norm(‘cg, ‘cl, ‘f) #
‘null.

8.23 Normal form and validity of a definition, definition list or abstract program

For a global context ‘cg, and a local tuple accessor checker ‘checker containing <'‘lis, ‘onFail>, the normal form in ‘cg
of ‘checker (a valid normalized local tuple accessor checker or ‘null), denoted by ‘norm(‘cg, checker), is the normal-
ized local tuple accessor checker containing <‘lis, ‘norm(‘cg, 0, ‘onFail)> if ‘lis is valid and ‘onFail is valid in ‘cg and 0;
and ‘null otherwise.

For a global context ‘cg, and a local tuple accessor checker ‘checker, ‘checker is valid in ‘cg iff ‘norm(‘cg, ‘checker)
‘null.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 99 of 203

For a global context ‘cg, and a local tuple accessor descriptor ‘desc, the normal form in ‘cg of ‘desc (a valid nor-
malized local tuple accessor descriptor or ‘null), denoted by ‘norm(‘cg, ‘desc), is given by one of the following mutu-
ally exclusive cases:

e Oif‘desc=0
* as above if ‘desc is a normalized local tuple accessor checker

For a global context ‘cg, and a local tuple accessor descriptor ‘desc, ‘desc is valid in ‘cg iff ‘norm(‘cg, ‘desc) # ‘null.

For a global context ‘cg, and a definition ‘def containing <‘comment, ‘name, ‘accessTupleLocDesc, ‘ths>,
the normal form in ‘cg of ‘def, denoted by ‘norm(‘cg, ‘def), is the normalized definition containing <‘name, ‘ad-
dCheck(‘norm(‘cg, ‘accessTupleLocDesc), ‘norm(‘cg, ‘contextLoc(‘norm(‘cg, ‘accessTupleLocDesc)), Ths))> if
‘cg(‘name) = ‘null, ‘accessTupleLocDesc is valid in ‘cg, and ‘rhs is valid in ‘cg and ‘contextLoc(‘norm(‘cg, ‘accessTu-
pleLocDesc)); and ‘null otherwise.

For a global context ‘cg, and a definition ‘def, ‘def is valid in ‘cg iff norm(‘cg, ‘def) # ‘null.

For a definition list ‘dl containing ‘1, the normal form of ‘dl (a valid global context or ‘null), denoted by ‘norm(‘dl),
is defined by recursion on ‘L:

* the global context containing 0 if 1=0

e If ‘1= <‘def, r>: Let ‘dIR be the definition list containing ‘r. Let ‘cgR = ‘norm(‘dIR). ‘norm(‘dl) is given by one of
the following mutually exclusive cases:

— ‘nullif ‘cgR = null
— If‘cgR # null: Let ‘cgR contain ‘cgRL. ‘norm(‘dl) is the global context containing <‘norm(‘cgR, ‘def),

‘cgRL> if ‘def is valid in ‘cgR; and ‘null otherwise.

A definition list ‘dl is valid iff ‘norm(‘dl) # ‘null.
For a program ‘prog, the normal form of ‘prog, denoted by ‘norm(‘prog), is ‘norm(‘defLis(‘prog)).
A program ‘prog is valid iff ‘moduNameLis(‘prog) is valid and norm(‘prog) # ‘null.

8.24 Pseudo-NummSquared complete

At this point, normal forms have been completely defined. Therefore, pseudo-NummSquared can include the full
NummSquared concrete syntax.

8.25 Some true large function extensions

For large function extensions ‘f and ‘g, [‘Func.Lg.Ext.eq ‘f ‘g] is true iff ‘f=‘g.

Proof. For each tagged small function extension ‘x: [‘Func.Lg.Ext.eq ‘f ‘g](x) = ‘Func.Lg.Ext.eq({f(x), ‘g(‘"x)}).
[‘Func.Lg.Ext.eq ‘f ‘g] (x) is true iff ‘f(‘x) = ‘g(‘x). O
For large function extensions ‘f and ‘%, if ‘f is unchanging, the following is true:
[‘Func.Lg.Ext.eq [‘f x] f]

Proof. For each tagged small function extension ‘y: [‘f x](‘y) = ‘f('x(‘y)) = 1(y). O
For a large function extension ‘f such that, for each tagged small function extension ‘x, ‘f(‘x) is a rule tagged small
function extension and an identity, the following is true:
[‘Func.Lg.Ext.eq [‘Func.Lg.Ext.dom f] ‘f]

Proof. For each tagged small function extension ‘x: [‘Func.Lg.Ext.dom ‘f](‘x) = ‘domFuncExt(‘f(‘x)) = ‘f(‘x). O

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 100 of 203

8.25.1 Identity

Identity large composition axiom: For a normalized large function ‘x:

A \

ax.i.co.lg['x] = [~= [~1 X] x];

For a large function extension ‘x, ‘Func.Lg.Ext.ax.i.co.lg[‘x] is true.

Proof. For each tagged small function extension ‘y: [‘Func.Lg.Ext.i x](‘y) = ‘Func.Lg.Ext.i(x(‘y)) = x(‘y). O

Identity large composition right axiom: For a normalized large function ‘x:
ax.i.co.lg.right['x] = [~= ['x ~1i] x]1;

For a large function extension ‘x, ‘Func.Lg.Ext.ax.i.co.lg.right[x] is true.

Proof. For each tagged small function extension ‘y: [x ‘Func.Lg.Ext.i](‘y) = x(‘Func.Lg.Ext.i(‘y)) = x(‘y). O

8.25.2 Null

Null large composition axiom: For a normalized large function ‘x:
ax.null.co.lg['x] = [~= [~null ‘x] ~null];

For a large function extension ‘%, ‘Func.Lg.Ext.ax.null.co.lg[x] is true.

Proof. ‘Func.Lg.Ext.null is unchanging. O
Null null predicate axiom:
ax.null.Null = [~= [~Null ~null] 171;
‘Func.Lg.Ext.ax.null.Null is true.
Proof. For each tagged small function extension x: [‘Func.Lg.Ext.Null ‘Func.Lg.Ext.null] (x) =
‘Func.Lg.Ext.Null(‘Func.Lg.Ext.null(‘x)) = ‘Func.Lg.Ext.Null(‘Func.Sm.Ext.null) = ‘Func.Sm.Ext.one =

‘Func.Lg.Ext.one(x). O
Null pair predicate axiom:

ax.null.Pair = [~= [~Pair ~null] 01;

‘Func.Lg.Ext.ax.null.Pair is true.

Proof. For each tagged small function extension ‘x: [‘Func.Lg.Ext.Pair ‘Func.Lg.Ext.null](‘x) =

‘Func.Lg.Ext.Pair(‘Func.Lg.Ext.null(‘x)) = ‘Func.Lg.Ext.Pair(‘Func.Sm.Ext.null) = ‘Func.Sm.Ext.zero =

‘Func.Lg.Ext.zero(‘x). O
Null domain axiom:

ax.null.dom = [~= [~dom ~null] ~Null.set];

‘Func.Lg.Ext.ax.null.dom is true.

Proof. For each tagged small function extension ‘x: [‘Func.Lg.Ext.dom ‘Func.Lg.Ext.null](‘x) = ‘dom-

FuncExt(‘Func.Lg.Ext.null(‘x)) = ‘domFuncExt(‘Func.Sm.Ext.null) = ‘Func.Sm.Ext.Tagged.Null.set =

‘Func.Lg.Ext.Null.set(‘x). O
Null small composition axiom: For a normalized large function x:

ax.null.co.sm['x] = [~= (~null Yx) ~null];

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 101 of 203

For a large function extension ‘%, ‘Func.Lg.Ext.ax.null.co.sm[)] is true.

Proof. For each tagged small function extension ‘y: (‘Func.Lg.Ext.null x)(‘y) = ‘Func.Lg.Ext.null(‘y) (x(‘y)) =
‘Func.Sm.Ext.null(x(‘y)) = ‘Func.Sm.Ext.null = ‘Func.Lg.Ext.null(‘y). O
Null if-then-else axiom: For normalized large functions ‘t and ‘e:

ax.null.ite[‘t ‘e] = [~= ~ite[~null ‘t ‘e] ~null];

For large function extensions ‘t and ‘e, ‘Func.Lg.Ext.ax.null.ite[‘t ‘e] is true.

Proof. For each tagged small function extension x: ‘Func.Lg.Ext.null(x) = ‘Func.Sm.Ext.null. ~ite[‘Func.Lg.Ext.null ‘t
‘e](*x) = ‘Func.Sm.Ext.null = ‘Func.Lg.Ext.null(‘x). O

8.25.3 Zero
Zero large composition axiom: For a normalized large function ‘x:
ax.zero.co.lg['x] = [~= [0 ‘x] 0];

For a large function extension ‘x, ‘Func.Lg.Ext.ax.zero.co.lg[‘x] is true.

Proof. ‘Func.Lg.Ext.zero is unchanging. O
Zero null predicate axiom:

ax.zero.Null = [~= [~Null O] 01;

‘Func.Lg.Ext.ax.zero.Null is true.

Proof. For each tagged small function extension x: [‘Func.Lg.Ext.Null ‘Func.Lg.Ext.zero](‘x) =

‘Func.Lg.Ext.Null(‘Func.Lg.Ext.zero('x)) = ‘Func.Lg.Ext.Null(‘Func.Sm.Ext.zero) = ‘Func.Sm.Ext.zero =

‘Func.Lg.Ext.zero(‘x). O
Zero pair predicate axiom:

ax.zero.Pair = [~= [~Pair 0] 01;

‘Func.Lg.Ext.ax.zero.Pair is true.

Proof. For each tagged small function extension ‘x: [‘Func.Lg.Ext.Pair ‘Func.Lg.Ext.zero](x) =

‘Func.Lg.Ext.Pair(‘Func.Lg.Ext.zero(‘x)) = ‘Func.Lg.Ext.Pair(‘Func.Sm.Ext.zero) = ‘Func.Sm.Ext.zero =

‘Func.Lg.Ext.zero(‘x). O
Zero domain axiom:

ax.zero.dom = [~= [~dom 0] ~Null.set];

‘Func.Lg.Ext.ax.zero.dom is true.

Proof. For each tagged small function extension ‘x: [‘Func.Lg.Ext.dom ‘Func.Lg.Ext.zero](‘x) = ‘dom-

FuncExt(‘Func.Lg.Ext.zero(‘x)) = ‘domFuncExt(‘Func.Sm.Ext.zero) = ‘Func.Sm.Ext.Tagged.Null.set =

‘Func.Lg.Ext.Null.set(‘x). O
Zero small composition axiom: For a normalized large function x:

A

ax.zero.co.sm['x] = [~= (0 X) ~null];

For a large function extension ‘%, ‘Func.Lg.Ext.ax.zero.co.sm[‘X] is true.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 102 of 203

Proof. For each tagged small function extension ‘y: (‘Func.Lg.Ext.zero x)(‘y) = ‘Func.Lg.Ext.zero(‘y) (x(‘y)) =
‘Func.Sm.Ext.zero(‘x(‘y)) = ‘Func.Sm.Ext.null = ‘Func.Lg.Ext.null(‘y). O
Zero if-then-else axiom: For normalized large functions ‘t and ‘e:

ax.zero.itel['t ‘e] = [~= ~ite[0 ‘t ‘el ‘el

For large function extensions ‘t and ‘e, ‘Func.Lg.Ext.ax.zero.ite[‘t ‘e] is true.

Proof. For each tagged small function extension x: ‘Func.Lg.Ext.zero(‘x) = ‘Func.Sm.Ext.zero. ~ite[‘Func.Lg.Ext.zero
‘t ‘e](x) = ‘e(x). O

8.25.4 One

One large composition axiom: For a normalized large function ‘x:
ax.one.co.lg['x] = [~= [1 ‘x] 11;

For a large function extension ‘%, ‘Func.Lg.Ext.ax.one.co.lg[‘x] is true.

Proof. ‘Func.Lg.Ext.one is unchanging. O
One null predicate axiom:

ax.one.Null = [~= [~Null 1] 01;

‘Func.Lg.Ext.ax.one.Null is true.

Proof. For each tagged small function extension ‘x: [‘Func.Lg.Ext.Null ‘Func.Lg.Ext.one](x) =

‘Func.Lg.Ext.Null(‘Func.Lg.Ext.one(x)) = ‘Func.Lg.Ext.Null(‘Func.Sm.Ext.one) = ‘Func.Sm.Ext.zero =

‘Func.Lg.Ext.zero(‘x). O
One pair predicate axiom:

ax.one.Pair = [~= [~Pair 1] 01;

‘Func.Lg.Ext.ax.one.Pair is true.

Proof. For each tagged small function extension x: [‘Func.Lg.Ext.Pair ‘Func.Lg.Ext.one](‘x) =

‘Func.Lg.Ext.Pair(‘Func.Lg.Ext.one(‘x)) = ‘Func.Lg.Ext.Pair(‘Func.Sm.Ext.one) = ‘Func.Sm.Ext.zero =

‘Func.Lg.Ext.zero(‘x). O
One domain axiom:

ax.one.dom = [~= [~dom 1] ~Nuro.set];

‘Func.Lg.Ext.ax.one.dom is true.

Proof. For each tagged small function extension ‘x: [‘Func.Lg.Ext.dom ‘Func.Lg.Ext.one](x) = ‘dom-

FuncExt(‘Func.Lg.Ext.one(x)) = ‘domFuncExt(‘Func.Sm.Ext.one) = ‘Func.Sm.Ext.Tagged.Nuro.set =

‘Func.Lg.Ext.Nuro.set(‘x). O
One small composition axiom: For a normalized large function ‘x:

ax.one.co.sm['x] = [~= (1 ‘x) [~Nuro.set.res ‘x11;

For a large function extension ‘x, ‘Func.Lg.Ext.ax.one.co.sm[‘X] is true.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 103 of 203

Proof. For each tagged small function extension ‘y: (‘Func.Lg.Ext.one xX)(‘y) = ‘Func.Lg.Ext.one(‘y)(‘x(‘y)) =
‘Func.Sm.Ext.one(x(‘y)) = ‘Func.Lg.Ext.Nuro.set.res(‘x(‘y)) = [‘Func.Lg.Ext.Nuro.set.res x](‘y). O
One if-then-else axiom: For normalized large functions ‘t and ‘e:

ax.one.ite['t ‘e] = [~= ~ite[l ‘t ‘e] ‘t];

For large function extensions ‘t and ‘e, ‘Func.Lg.Ext.ax.one.ite[‘t ‘e] is true.

Proof. For each tagged small function extension ‘x: ‘Func.Lg.Ext.one(‘x) = ‘Func.Sm.Ext.one. ~ite[‘Func.Lg.Ext.one ‘t
‘] (%) = ‘t(‘x). O

8.25.5 Null set

Null set large composition axiom: For a normalized large function x:
ax.Null.set.co.lg['x] = [~= [~Null.set Yx] ~Null.set];

For a large function extension ‘%, ‘Func.Lg.Ext.ax.Null.set.co.lg[‘x] is true.

Proof. ‘Func.Lg.Ext.Null.set is unchanging. O
Null set null predicate axiom:

ax.Null.set.Null = [~= [~Null ~Null.set] 01;

‘Func.Lg.Ext.ax.Null.set.Null is true.

Proof. For each tagged small function extension x: [‘Func.Lg.Ext.Null ‘Func.Lg.Ext.Null.set](x) =

‘Func.Lg.Ext.Null(‘Func.Lg.Ext.Null.set(x)) = ‘Func.Lg.Ext.Null(‘Func.Sm.Ext.Tagged.Null.set) = ‘Func.Sm.Ext.zero

= ‘Func.Lg.Ext.zero(‘x). O
Null set pair predicate axiom:

ax.Null.set.Pair = [~= [~Pair ~Null.set] 01;

‘Func.Lg.Ext.ax.Null.set.Pair is true.

Proof. For each tagged small function extension ‘x: [‘Func.Lg.Ext.Pair ‘Func.Lg.Ext.Null.set](‘x) =

‘Func.Lg.Ext.Pair(‘Func.Lg.Ext.Null.set(‘x)) = ‘Func.Lg.Ext.Pair(‘Func.Sm.Ext.Tagged.Null.set) = ‘Func.Sm.Ext.zero

= ‘Func.Lg.Ext.zero(‘x). O
Null set domain axiom:

ax.Null.set.dom = [~= [~dom ~Null.set] ~Null.set];

‘Func.Lg.Ext.ax.Null.set.dom is true.

Proof. For each tagged small function extension ‘%, ‘Func.Lg.Ext.Null.set(x) = ‘Func.Sm.Ext.Tagged.Null.set is a rule
tagged small function extension and an identity. O
Null set small composition axiom: For a normalized large function ‘x:

\

ax.Null.set.co.sm['x] = [~= (~Null.set X) ~null];

For a large function extension ‘%, ‘Func.Lg.Ext.ax.Null.set.co.sm[X] is true.
Proof. For each tagged small function extension ‘y: (‘Func.Lg.Ext.Null.set %) (‘y) = ‘Func.Lg.Ext.Null.set(‘y) (‘x(‘y)) =

‘Func.Sm.Ext.Tagged.Null.set(‘x(‘y)) = ‘Func.Sm.Ext.null = ‘Func.Lg.Ext.null(‘y). O
Null set if-then-else axiom: For normalized large functions ‘t and ‘e:

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 104 of 203

ax.Null.set.ite['t ‘e] =
[~= ~ite[~Null.set ‘t ‘e] ~null];

For large function extensions ‘t and ‘e, ‘Func.Lg.Ext.ax.Null.set.ite[‘t ‘e] is true.

Proof. For each tagged small function extension ‘x: ‘Func.Lg.Ext.Null.set(‘x) = ‘Func.Sm.Ext.Tagged.Null.set.
“ite[‘Func.Lg.Ext.Null.set ‘t ‘e](x) = ‘Func.Sm.Ext.null = ‘Func.Lg.Ext.null(‘x). O

8.25.6 Nuro set

Nuro set large composition axiom: For a normalized large function x:

\

ax.Nuro.set.co.lg['x] = [~= [~Nuro.set x] ~Nuro.set];

For a large function extension ‘%, ‘Func.Lg.Ext.ax.Nuro.set.co.lg[x] is true.

Proof. ‘Func.Lg.Ext.Nuro.set is unchanging. O
Nuro set null predicate axiom:

ax.Nuro.set.Null = [~= [~Null ~Nuro.set] 01;

‘Func.Lg.Ext.ax.Nuro.set.Null is true.

Proof. For each tagged small function extension x: [‘Func.Lg.Ext.Null ‘Func.Lg.Ext.Nuro.set](‘x) =

‘Func.Lg.Ext.Null(‘Func.Lg.Ext.Nuro.set(‘x)) = ‘Func.Lg.Ext.Null(‘Func.Sm.Ext.Tagged.Nuro.set) = ‘Func.Sm.Ext.zero

= ‘Func.Lg.Ext.zero(‘x). O
Nuro set pair predicate axiom:

ax.Nuro.set.Pair = [~= [~Pair ~Nuro.set] 0];

‘Func.Lg.Ext.ax.Nuro.set.Pair is true.

Proof. For each tagged small function extension ‘x: [‘Func.Lg.Ext.Pair ‘Func.Lg.Ext.Nuro.set](‘x) =

‘Func.Lg.Ext.Pair(‘Func.Lg.Ext.Nuro.set(‘x)) = ‘Func.Lg.Ext.Pair(‘Func.Sm.Ext.Tagged.Nuro.set) = ‘Func.Sm.Ext.zero =

‘Func.Lg.Ext.zero(‘x). O
Nuro set domain axiom:

ax.Nuro.set.dom = [~= [~dom ~Nuro.set] ~Nuro.set];

‘Func.Lg.Ext.ax.Nuro.set.dom is true.

Proof. For each tagged small function extension ‘%, ‘Func.Lg.Ext.Nuro.set(‘x) = ‘Func.Sm.Ext.Tagged.Nuro.set is a
rule tagged small function extension and an identity. O
Nuro set small composition axiom: For a normalized large function ‘x:

ax.Nuro.set.co.sm[‘x] =
[~= (~Nuro.Set Yx) [~Nuro.set.res ‘x11;

For a large function extension ‘%, ‘Func.Lg.Ext.ax.Nuro.set.co.sm[‘X] is true.
Proof. For each tagged small function extension ‘y: (‘Func.Lg.Ext.Nuro.Set ‘x)(‘y) = ‘Func.Lg.Ext.Nuro.Set(‘y) (‘x(‘y)) =

‘Func.Sm.Ext.Tagged.Nuro.set(‘x(‘y)) = ‘Func.Lg.Ext.Nuro.set.res(‘x(‘y)) = [‘Func.Lg.Ext.Nuro.set.res x](‘y). O
Nuro set if-then-else axiom: For normalized large functions ‘t and ‘e:

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 105 of 203

ax.Nuro.set.ite['t ‘e] =

A}

[~= ~ite[~Nuro.set ‘t e] ~null];

For large function extensions ‘t and ‘e, ‘Func.Lg.Ext.ax.Nuro.set.ite[‘t ‘e] is true.

Proof. For each tagged small function extension ‘x: ‘Func.Lg.Ext.Nuro.set(‘x) = ‘Func.Sm.Ext.Tagged.Nuro.set.
“ite[‘Func.Lg.Ext.Nuro.set ‘t ‘€] (‘x) = ‘Func.Sm.Ext.null = ‘Func.Lg.Ext.null(x). O

8.25.7 Leafset

Leaf set large composition axiom: For a normalized large function ‘x:
ax.Leaf.set.co.lg['x] = [~= [~Leaf.set ‘x] ~Leaf.set];

For a large function extension ‘x, ‘Func.Lg.Ext.ax.Leaf.set.co.lg[x] is true.

Proof. ‘Func.Lg.Ext.Leaf.set is unchanging. O
Leaf set null predicate axiom:

ax.Leaf.set.Null = [~= [~Null ~Leaf.set] 01;

‘Func.Lg.Ext.ax.Leaf.set.Null is true.

Proof. For each tagged small function extension x: [‘Func.Lg.Ext.Null ‘Func.Lg.Ext.Leaf.set](x) =

‘Func.Lg.Ext.Null(‘Func.Lg.Ext.Leaf.set(‘x)) = ‘Func.Lg.Ext.Null(‘Func.Sm.Ext.Tagged.Leaf.set) = ‘Func.Sm.Ext.zero

= ‘Func.Lg.Ext.zero(‘x). O
Leaf set pair predicate axiom:

ax.Leaf.set.Pair = [~= [~Pair ~Leaf.set] 0];

‘Func.Lg.Ext.ax.Leaf.set.Pair is true.

Proof. For each tagged small function extension ‘x: [‘Func.Lg.Ext.Pair ‘Func.Lg.Ext.Leaf.set](‘x) =

‘Func.Lg.Ext.Pair(‘Func.Lg.Ext.Leaf.set('x)) = ‘Func.Lg.Ext.Pair(‘Func.Sm.Ext.Tagged.Leaf.set) = ‘Func.Sm.Ext.zero

= ‘Func.Lg.Ext.zero(‘x). O
Leaf set domain axiom:

ax.Leaf.set.dom = [~= [~dom ~Leaf.set] ~Leaf.set];

‘Func.Lg.Ext.ax.Leaf.set.dom is true.

Proof. For each tagged small function extension ‘%, ‘Func.Lg.Ext.Leaf.set(‘x) = ‘Func.Sm.Ext.Tagged.Leaf.set is a rule
tagged small function extension and an identity. O
Leaf set small composition axiom: For a normalized large function x:

ax.Leaf.set.co.sm[‘x] =
[~= (~Leaf.Set '‘x) [~conf.n ‘x]1];

For a large function extension ‘%, ‘Func.Lg.Ext.ax.Leaf.set.co.sm[‘X] is true.
Proof. For each tagged small function extension ‘y: (‘Func.Lg.Ext.Leaf.Set x)(‘y) = ‘Func.Lg.Ext.Leaf.Set(‘y) (‘x(‘y)) =

‘Func.Sm.Ext.Tagged.Leaf.set(x(‘y)) = ‘Func.Lg.Ext.conf.n(x(‘y)) = [‘Func.Lg.Ext.conf.n x| (‘y). O
Leaf set if-then-else axiom: For normalized large functions ‘t and ‘e:

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 106 of 203

ax.Leaf.set.ite['t ‘e] =
[~= ~ite[~Leaf.set ‘t ‘e] ~null];

For large function extensions ‘t and ‘e, ‘Func.Lg.Ext.ax.Leaf.set.ite[‘t ‘e] is true.

Proof. For each tagged small function extension ‘x: ‘Func.Lg.Ext.Leaf.set('x) = ‘Func.Sm.Ext.Tagged.Leaf.set.
“ite[‘Func.Lg.Ext.Leaf.set ‘t ‘e] (x) = ‘Func.Sm.Ext.null = ‘Func.Lg.Ext.null(‘x). O

8.25.8 Treeset
Tree set large composition axiom: For a normalized large function ‘x:
ax.Tree.set.co.lg['x] = [~= [~Tree.set ‘x] ~Tree.set];

For a large function extension ‘x, ‘Func.Lg.Ext.ax.Tree.set.co.lg[x] is true.

Proof. ‘Func.Lg.Ext.Tree.set is unchanging. O
Tree set null predicate axiom:

ax.Tree.set.Null = [~= [~Null ~Tree.set] 01;

‘Func.Lg.Ext.ax.Tree.set.Null is true.

Proof. For each tagged small function extension ‘x:
[‘Func.Lg.Ext.Null ‘Func.Lg.Ext.Tree.set] (‘x) = ‘Func.Lg.Ext.Null(‘Func.Lg.Ext.Tree.set(x)) =
‘Func.Lg.Ext.Null(‘Func.Sm.Ext.Tagged.Tree.set) = ‘Func.Sm.Ext.zero = ‘Func.Lg.Ext.zero(‘x). O
Tree set pair predicate axiom:

ax.Tree.set.Pair = [~= [~Pair ~Tree.set] 0];

‘Func.Lg.Ext.ax.Tree.set.Pair is true.

Proof. For each tagged small function extension ‘x: [‘Func.Lg.Ext.Pair ‘Func.Lg.Ext.Tree.set](‘x) =

‘Func.Lg.Ext.Pair(‘Func.Lg.Ext.Tree.set(x)) = ‘Func.Lg.Ext.Pair(‘Func.Sm.Ext.Tagged.Tree.set) = ‘Func.Sm.Ext.zero

= ‘Func.Lg.Ext.zero(‘x). O
Tree set domain axiom:

ax.Tree.set.dom = [~= [~dom ~Tree.set] ~Tree.set];

‘Func.Lg.Ext.ax.Tree.set.dom is true.

Proof. For each tagged small function extension ‘%, ‘Func.Lg.Ext.Tree.set(x) = ‘Func.Sm.Ext.Tagged.Tree.set is a rule
tagged small function extension and an identity. O
Tree set small composition axiom: For a normalized large function ‘x:

ax.Tree.set.co.sm['x] =
[~= (~Tree.set Yx) [~Tree.set.res ‘x11;

For a large function extension ‘%, ‘Func.Lg.Ext.ax.Tree.set.co.sm[‘X] is true.
Proof. For each tagged small function extension ‘y: (‘Func.Lg.Ext.Tree.set x)(‘y) = ‘Func.Lg.Ext.Tree.set(‘y) (‘x(‘y)) =

‘Func.Sm.Ext.Tagged.Tree.set(x(‘y)) = ‘Func.Lg.Ext.Tree.set.res(‘x(‘y)) = [‘Func.Lg.Ext.Tree.set.res ‘x](‘y). O
Tree set if-then-else axiom: For normalized large functions ‘t and ‘e:

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 107 of 203

ax.Tree.set.ite['t ‘e] =

[~= ~ite[~Tree.set ‘t ‘e] ~null];

For large function extensions ‘t and ‘e, ‘Func.Lg.Ext.ax.Tree.set.ite[‘t ‘e] is true.

Proof. For each tagged small function extension ‘x: ‘Func.Lg.Ext.Tree.set(‘x) = ‘Func.Sm.Ext.Tagged.Tree.set.
“ite[‘Func.Lg.Ext.Tree.set ‘t ‘e](x) = ‘Func.Sm.Ext.null = ‘Func.Lg.Ext.null(‘x). O

8.25.9 Large composition

Large composition large composition axiom: For normalized large functions ‘outer, ‘inner and ‘x:

A}

ax.co.lg.co.lg[‘outer ‘inner ‘x] =

[~= [[‘outer ‘inner] ‘x] [Youter [Yinner ‘)11 1;

For large function extensions ‘outer, ‘inner and ‘x, ‘Func.Lg.Ext.ax.co.lg.co.lg[‘outer ‘inner ‘X] is true.

Proof. For each tagged small function extension ‘y: [[‘outer ‘inner] x](‘y) = [‘outer ‘inner](x(‘y)) =
‘outer(‘inner(‘x(‘y))) = ‘outer([‘inner x](‘y)) = [‘outer [‘inner x]](‘y). O

8.25.10 Small composition

Small composition large composition axiom: For normalized large functions ‘called, ‘arg and ‘x:

A

ax.co.lg.co.sm[‘called ‘arg ‘x] =

[~= [(‘called ‘arg) ‘%] ([‘called 1‘x] [Yarg 'x1]) 1;

For large function extensions ‘called, ‘arg and ‘x, ‘Func.Lg.Ext.ax.co.lg.co.sm|‘called ‘arg x] is true.

Proof. For each tagged small function extension ‘y: [(‘called ‘arg) ‘x](‘y) = (‘called ‘arg) (‘x(‘y)) =
‘called (x(‘y)) (‘arg(x(‘y))) = [‘called x](‘y)([‘arg xI(‘y)) = ([‘called X] [‘arg x])(‘y). O

8.25.11 Pair

Pair large composition axiom: For normalized large functions ‘left, right and x:
ax.pair.co.lg[‘left ‘right ‘x] =
[~= [{‘left ‘right} ‘x] {[‘left 'x] [‘right ‘x1} 1;
For large function extensions ‘l, r and ‘%, ‘Func.Lg.Ext.ax.pair.co.lg[‘] T *x] is true.
Proof. For each tagged small function extension ‘y: [{‘] 1} %] (‘y) = {'l ‘T}(x(‘Y)) = {'1(x(‘VY)), T(x(‘¥Y)} = {['I %] ('Y), [T

XY} ={1%] [T xB (). O
Pair null predicate axiom: For normalized large functions ‘left and ‘right:

ax.pair.Null[‘left ‘right] =
[~= [~Null {‘left ‘right}] 01;

For large function extensions ‘1 and ‘r, ‘Func.Lg.Ext.ax.pair.Null[‘] 1] is true.
Proof. For each tagged small function extension ‘x: [‘Func.Lg.Ext.Null {'] 1}](x) = ‘Func.Lg.Ext.Null({‘1(x), T("0)}) =

‘Func.Sm.Ext.zero = ‘Func.Lg.Ext.zero(‘x). O
Pair pair predicate axiom: For normalized large functions ‘left and ‘right:

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 108 of 203

ax.pair.Pair[‘left ‘right] =
[~= [~Palir {‘left ‘right}] 17;

For large function extensions ‘l and ‘r, ‘Func.Lg.Ext.ax.pair.Pair[‘l 7] is true.

Proof. For each tagged small function extension ‘x: [‘Func.Lg.Ext.Pair {‘] 1}](‘x) = ‘Func.Lg.Ext.Pair({1(x), T(*x)}) =
‘Func.Sm.Ext.one = ‘Func.Lg.Ext.one(‘x). O
Pair domain axiom: For normalized large functions ‘left and ‘right:

ax.pair.dom|[‘left ‘right] =
[~= [~dom {‘left ‘right}] ~Leaf.set];

For large function extensions ‘l and ‘r, ‘Func.Lg.Ext.ax.pair.dom|[‘] 1] is true.

Proof. For each tagged small function extension ‘x: [‘Func.Lg.Ext.dom {‘] 1}](x) = ‘domFuncExt({‘1(‘x), T(‘x)}) =
‘Func.Sm.Ext.Tagged.Leaf.set = ‘Func.Lg.Ext.Leaf.set(‘x). O
Pair small composition axiom: For normalized large functions ‘left, right and ‘x:

\

ax.pair.co.sm[‘left ‘right ‘x] =
[~= ({‘left ‘right} ‘X) ~ite['x ‘right ‘left] 1;

For large function extensions ‘], ‘r and ‘x, ‘Func.Lg.Ext.ax.pair.co.sm[‘l T] is true.

Proof.

e ({1 ¥ (y) = {1 (P (x(Y) = {10, T(}(x(‘V). ({171} X (‘y) is given by one of the following mutually exclu-
sive cases:

- ‘1(*x) if x(‘y) = ‘Func.Sm.Ext.zero

- 1(%) if x(‘y) = ‘Func.Sm.Ext.one

- ‘Func.Sm.Ext.null if ‘x(‘y) is not Boolean
* ~ite[x T ‘1](‘y) is given by one of the following mutually exclusive cases:

- ‘1(y) if x(‘y) = ‘Func.Sm.Ext.zero

- ‘1('y) if x(‘y) = ‘Func.Sm.Ext.one

— ‘Func.Sm.Ext.null if *x(‘y) is not Boolean
o ({17} % ('y) ="ite[x T ‘1 (‘y). O
Pair if-then-else axiom: For normalized large functions ‘left, right, ‘t and ‘e:

ax.pair.ite[‘left ‘right ‘t ‘e] =
[~= ~ite[{‘left ‘right} ‘t ‘el ~null];

For large function extensions ‘1, 1, ‘t and ‘e, ‘Func.Lg.Ext.ax.pair.ite[‘] T ‘t ‘e] is true.

Proof. For each tagged small function extension x: {‘1 1} (x) = {'1(*x), T(‘'x)}. 7ite[{'l ‘t} ‘t ‘€] (x) = ‘Func.Sm.Ext.null =
‘Func.Lg.Ext.null(*x). O

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 109 of 203

8.25.12 Dependent sum

Dependent sum large composition axiom: For normalized large functions ‘family and ‘x:

\

ax.s.d.co.lg[‘family ‘x] =
[~= [~s.d[‘family] ‘x] ~s.d[[‘family ‘x]] 1;

For large function extensions ‘family and ‘x, ‘Func.Lg.Ext.ax.s.d.co.lg[family)] is true.

Proof. For each tagged small function extension ‘y: [“s.d[‘family] x](‘y) = “s.d[‘family] (x(‘y)) =
‘sumDep (‘family(x(‘y))) = ‘sumDep([family x](‘y)) = “s.d[[‘family x]]1(‘y). O
Dependent sum null predicate axiom: For a normalized large function ‘family:

ax.s.d.Null[‘family] = [~= [~Null ~s.d[~family]] 01;

For a large function extension ‘family, ‘Func.Lg.Ext.ax.s.d.Null[‘family] is true.

Proof. For each tagged small function extension ‘x: [‘Func.Lg.Ext.Null “s.d[‘family]] (%) =

‘Func.Lg.Ext.Null("s.d[‘family] (‘x)) = ‘Func.Lg.Ext.Null(‘sumDep(‘family(‘x))) = ‘Func.Sm.Ext.zero =

‘Func.Lg.Ext.zero(‘x). O
Dependent sum pair predicate axiom: For a normalized large function ‘family:

ax.s.d.Pair[‘family] = [~= [~Pair ~s.d[‘family]] 01];

For a large function extension ‘family, ‘Func.Lg.Ext.ax.s.d.Pair[‘family] is true.

Proof. For each tagged small function extension ‘x: [‘Func.Lg.Ext.Pair “s.d[‘family]] (x) =

‘Func.Lg.Ext.Pair("s.d[family] (x)) = ‘Func.Lg.Ext.Pair(‘sumDep(‘family(‘x))) = ‘Func.Sm.Ext.zero =

‘Func.Lg.Ext.zero(‘x). O
Dependent sum domain axiom: For a normalized large function ‘family:

ax.s.d.dom[‘family] =
[~= [~dom ~s.d[‘family]] ~s.d[‘family] 1;

For a large function extension ‘family, ‘Func.Lg.Ext.ax.s.d.dom[family] is true.

Proof. For each tagged small function extension ‘%, “s.d[‘family] (‘x) = ‘sumDep(‘family(‘x)) is a rule tagged small
function extension and an identity. O
Dependent sum small composition axiom: For normalized large functions ‘family and ‘x:

\

ax.s.d.co.sm[‘family ‘x] =

[~= (~s.d[‘family] Yx) [~s.d.res ‘family ‘)] 1;

For large function extensions ‘family and ‘%, ‘Func.Lg.Ext.ax.s.d.co.sm|[‘family X] is true.

Proof. For each tagged small function extension ‘y: ("s.d[‘family] %) (‘y) = "s.d[family] (‘y) (x(‘y)) =
‘sumDep (family(‘y)) (‘x(‘y)) = ‘Func.Lg.Ext.s.d.res({family(‘y), x(‘y)}) = [‘Func.Lg.Ext.s.d.res ‘family %] (‘y). O
Dependent sum if-then-else axiom: For normalized large functions ‘family, ‘t and ‘e:

ax.s.d.ite[‘family ‘t ‘e] =
[~= ~ite[~s.d[‘family] ‘£ ‘el ~null];

For large function extensions ‘family, ‘t and ‘e, ‘Func.Lg.Ext.ax.s.d.ite[‘family ‘t ‘e] is true.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 110 of 203

Proof. For each tagged small function extension x: “s.d[family] (‘x) = ‘sumDep(‘family(‘x)). “ite["s.d[‘family] ‘t ‘€] (‘x)
= ‘Func.Sm.Ext.null = ‘Func.Lg.Ext.null(x). O

8.25.13 Dependent product

Dependent product large composition axiom: For normalized large functions ‘family and ‘x:

\

ax.p.d.co.lg[‘family ‘x] =

[~= [~p.d[‘family] ‘x] ~p.d[[‘family ‘x]] 1;

For large function extensions ‘family and ‘x, ‘Func.Lg.Ext.ax.p.d.co.lg[family X] is true.

Proof. For each tagged small function extension ‘y: ["p.d[‘family] ‘%] (‘y) = “p.d[‘family] (‘x(‘y)) = ‘prod-
Dep(‘family(‘x(‘y))) = ‘prodDep([‘family ‘x](‘y)) = “p.d[[‘family x]](‘y). O
Dependent product null predicate axiom: For a normalized large function ‘family:

ax.p.d.Null[‘family] = [~= [~Null ~p.d[‘family]] 0];

For a large function extension ‘family, ‘Func.Lg.Ext.ax.p.d.Null[‘family] is true.

Proof. For each tagged small function extension ‘x: [‘Func.Lg.Ext.Null “p.d[‘family]](x) =

‘Func.Lg.Ext.Null("p.d[‘family] (x)) = ‘Func.Lg.Ext.Null(‘prodDep (‘family(x))) = ‘Func.Sm.Ext.zero =

‘Func.Lg.Ext.zero(‘x). O
Dependent product pair predicate axiom: For a normalized large function ‘family:

ax.p.d.Pair[‘family] = [~= [~Pair ~p.d[‘family]] 0];

For a large function extension ‘family, ‘Func.Lg.Ext.ax.p.d.Pair[‘family] is true.

Proof. For each tagged small function extension ‘x: [‘Func.Lg.Ext.Pair “p.d[‘family]] (‘%) =

‘Func.Lg.Ext.Pair("p.d[‘family] (x)) = ‘Func.Lg.Ext.Pair(‘prodDep(‘family(‘x))) = ‘Func.Sm.Ext.zero =

‘Func.Lg.Ext.zero(‘x). O
Dependent product domain axiom: For a normalized large function ‘family:

ax.p.d.dom[‘family] =
[~= [~dom ~p.d[‘family]] ~p.d[‘family]];

For a large function extension ‘family, ‘Func.Lg.Ext.ax.p.d.dom[‘family] is true.

Proof. For each tagged small function extension ‘%, “p.d[family] (‘x) = ‘prodDep(‘family(‘x)) is a rule tagged small
function extension and an identity. O
Dependent product small composition axiom: For normalized large functions ‘family and ‘x:

ax.p.d.co.sm[‘family ‘x] =
[~= (~p.d[‘family] ‘x) [~p.d.res ‘family '‘x] 15

For large function extensions ‘family and ‘%, ‘Func.Lg.Ext.ax.p.d.co.sm|[‘family ‘x] is true.
Proof. For each tagged small function extension ‘y: ("p.d[‘family] x)(‘y) = "p.d[‘family] (‘y) (x(‘y)) = ‘prod-

Dep(‘family(‘y)) (x(‘y)) = ‘Func.Lg.Ext.p.d.res({‘family(‘y), x(‘y)}) = [‘Func.Lg.Ext.p.d.res ‘family x](‘y). O
Dependent product if-then-else axiom: For normalized large functions ‘family, ‘t and ‘e:

ax.p.d.ite[‘family ‘t ‘e] =
[~= ~ite[~p.d[‘family] ‘t ‘el ~null];

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18,2006 / 111 of 203

For large function extensions ‘family, ‘t and ‘e, ‘Func.Lg.Ext.ax.p.d.ite[family ‘X] is true.
Proof. For each tagged small function extension ‘x: “p.d[‘family] (%) = ‘prodDep(‘family(‘x)). ~ite["p.d[‘family] ‘t ‘e](x)
= ‘Func.Sm.Ext.null = ‘Func.Lg.Ext.null(x). O
8.25.14 Curry

Curry large composition axiom: For normalized large functions ‘uncurry, ‘restrictor and ‘x:

\

ax.c.co.lg[‘uncurry ‘restrictor ‘x] =
[~=
[~c[‘uncurry ‘restrictor] Yx]
~c.aug|[‘uncurry ‘restrictor Yx]

1;

For large function extensions ‘uncurry, ‘restrictor and ‘%, ‘Func.Lg.Ext.ax.c.co.lg[‘uncurry ‘Testrictor ‘x] is true.

Proof. For each tagged small function extension ‘y: ["c[‘uncurry ‘restrictor] x](‘y) = “c.aug[‘uncurry ‘restrictor %] (‘y).
O
Curry null predicate axiom: For normalized large functions ‘uncurry and ‘restrictor:

ax.c.Null[‘uncurry ‘restrictor] =
[~= [~Null ~c[‘uncurry ‘restrictor]] 01;

For large function extensions ‘uncurry and ‘restrictor, ‘Func.Lg.Ext.ax.c.Null[‘uncurry ‘restrictor] is true.

Proof. For each tagged small function extension x: [‘Func.Lg.Ext.Null “c[‘uncurry ‘restrictor]](x) =
‘Func.Lg.Ext.Null("c[‘uncurry ‘Testrictor] (x)) = ‘Func.Sm.Ext.zero = ‘Func.Lg.Ext.zero(‘x). O
Curry pair predicate axiom: For normalized large functions ‘uncurry and ‘restrictor:

ax.c.Pair[‘uncurry ‘restrictor] =
[~= [~Pair ~c[‘uncurry ‘restrictor]] 01;

For large function extensions ‘uncurry and ‘restrictor, ‘Func.Lg.Ext.ax.c.Pair[‘uncurry ‘restrictor] is true.

Proof. For each tagged small function extension x: [‘Func.Lg.Ext.Pair “c[‘uncurry ‘restrictor]](‘x) =
‘Func.Lg.Ext.Pair("c[‘uncurry Testrictor] (‘x)) = ‘Func.Sm.Ext.zero = ‘Func.Lg.Ext.zero(x). O
Curry domain axiom: For normalized large functions ‘uncurry and ‘restrictor:

ax.c.dom[‘uncurry ‘restrictor] =

[~=
[~dom ~c[‘uncurry ‘restrictor]]
[~dom ‘restrictor]

1;
For large function extensions ‘uncurry and ‘restrictor, ‘Func.Lg.Ext.ax.c.dom[‘uncurry Testrictor] is true.
Proof. For each tagged small function extension ‘x: [‘Func.Lg.Ext.dom “c[‘uncurry ‘restrictor]](‘x) = ‘dom-

FuncExt("c[‘uncurry Testrictor](‘x)) = ‘domFuncExt(‘restrictor(‘x)) = [‘Func.Lg.Ext.dom ‘Testrictor] (‘x). O
Curry small composition axiom: For normalized large functions ‘uncurry, ‘restrictor and ‘x:

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 112 of 203

\

ax.c.co.sm[‘uncurry ‘restrictor ‘x] =

[~:

(~c[‘uncurry ‘restrictor] Yx)

A}

[~c.res[‘uncurry] ~1 ‘restrictor x]

1;

For large function extensions ‘uncurry, Testrictor and ‘), ‘Func.Lg.Ext.ax.c.co.sm[‘uncurry ‘Testrictor ‘%] is true.
Proof. For each tagged small function extension ‘y: ("c[‘uncurry ‘restrictor] %) (‘y) = “c[‘uncurry ‘restrictor](‘y) (‘x(‘y))
= ‘uncurry({'y, ‘domFuncExt(‘restrictor(‘y)) (‘x(‘y))}) = “c.res[‘uncurry] ({‘y, ‘restrictor(‘y), x(‘y)}) = ["c.res[‘uncurry]

‘Func.Lg.Ext.i Testrictor x](‘y). O
Curry if-then-else axiom: For normalized large functions ‘uncurry, ‘restrictor, ‘t and ‘e:

\

ax.c.ite[‘uncurry ‘restrictor ‘t ‘e] =

[~= ~ite[~c[‘uncurry ‘restrictor] ‘t ‘e] ~null];

For large function extensions ‘uncurry, ‘restrictor, ‘t and ‘e, ‘Func.Lg.Ext.ax.c.ite[‘uncurry ‘restrictor ‘t ‘e] is true.

Proof. For each tagged small function extension x: “ite["c[‘uncurry ‘Testrictor] ‘t ‘e](‘x) = ‘Func.Sm.Ext.null =
‘Func.Lg.Ext.null(x). O

8.25.15 If-then-else
If-then-else large composition axiom: For normalized large functions ‘ifB, ‘thenP, ‘elseP and ‘x:

ax.ite.co.lg[ifP ‘thenP ‘elseP ‘x] =
[~=

[~ite[Y1ifP ‘thenP ‘elseP] Yx]

~ite[[‘1fP Yx] [YthenP ‘x] [‘elseP ‘x1]]
1i

For large function extensions ‘ifP, ‘thenDB, ‘elseP and ‘%, ‘Func.Lg.Ext.ax.ite.co.lg[‘ifP ‘thenP ‘elseP ‘X] is true.
Proof.

* For each tagged small function extension ‘y: [Tite[ifP ‘thenP ‘elseP] x](‘y) = 7ite[‘ifP ‘thenP ‘elseP](‘x(‘y)).
[Tite[‘ifP ‘thenP ‘elseP] x](‘y) is given by one of the following mutually exclusive cases:

- ‘elseP('x(‘y)) if ‘ifP(x(‘y)) = ‘Func.Sm.Ext.zero
- ‘thenP(‘x(‘y)) if ‘ifP(x(‘y)) = ‘Func.Sm.Ext.one

— ‘Func.Sm.Ext.null if ‘ifP(‘x(‘y)) is not Boolean
o “ite[[ifP X] [‘thenP x] [‘elseP ‘x]](‘y) is given by one of the following mutually exclusive cases:

— [‘elseP x| (‘y) if [‘ifP x](‘y) = ‘Func.Sm.Ext.zero
— [‘thenP %] (‘y) if [‘ifP %] (‘y) = ‘Func.Sm.Ext.one

— ‘Func.Sm.Ext.null if [‘ifP %] (‘y) is not Boolean

* [Tite[‘ifP ‘thenP ‘elseP] x| (‘y) = "ite[[‘ifP X] [‘thenP X] [‘elseP x]](‘y). O

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 113 of 203

8.25.16 Recursion
Recursion right-hand-side axiom: For normalized large functions ‘start and ‘step:

ax.r.rhs[‘'start ‘step] =
[~= ~r[‘'start ‘step] ~r.rhs['‘start ‘stepl];

For large function extensions ‘start and ‘step, ‘Func.Lg.Ext.ax.r.rhs[‘start ‘step] is true.

Proof. For each tagged small function extension x: “r[‘start ‘step] (‘) = “r.rhs[‘start ‘step] (‘x).

8.25.17 Propositional logic

The following are similar to logical axioms 1, 2 and 3 in [36, p.5]. Propositional logic in NummSquared is classical.

Logic weakening axiom:

ax.logic.weakening {%b %c} \ 1 =
[~imp %b [~imp %c %bll;

‘Func.Lg.Ext.ax.logic.weakening is true.
Logic nested implication axiom:

ax.logic.imp.nested {%$b %c %d} \ 1

[~imp
[~imp %b [~imp %c %d]]
[~imp [~imp %b %c] [~imp %b %d]]

‘Func.Lg.Ext.ax.logic.imp.nested is true.
Logic contrapositive axiom:

ax.logic.contrapos {%b %c} \ 1 =
[~imp
[~imp [~not %b] [~not %c]]
[~imp %c %b]

1;

‘Func.Lg.Ext.ax.logic.contrapos is true.

8.25.18 Truth

Truth introduction axiom:

ax.truth.intro =
[~imp

‘Func.Lg.Ext.ax.truth.intro is true.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 114 of 203

Proof. For each tagged small function extension ‘x: If ‘Func.Lg.Ext.eq({x, ‘Func.Sm.Ext.one}) is true, then x is true.

O

Truth elimination axiom:
ax.truth.elim =
[~imp

~1
[~= ~1i 1]

1i

‘Func.Lg.Ext.ax.truth.elim is true.
Proof. For each tagged small function extension ‘x: If ‘x is true, then ‘Func.Lg.Ext.eq({x, ‘Func.Sm.Ext.one}) is true.

O

8.25.19 Equals
Equals right-hand-side axiom:
ax.eq.rhs = [~= ~= ~=.rhs];

‘Func.Lg.Ext.ax.eq.rhs is true.
Proof. For each tagged small function extension x: ‘Func.Lg.Ext.eq(x) = ‘Func.Lg.Ext.eq.rhs(‘x). O

The following is somewhat similar to reflexivity of equality in [30, p.74].

Equals reflexive axiom: For a normalized large function x:
ax.eq.reflex['x] = [~= “x ‘x1;

For a large function extension ‘x, ‘Func.Lg.Ext.ax.eq.reflex[x] is true.
Proof. For each tagged small function extension ‘y: x(‘y) = x(‘y). O

The following is somewhat similar to substitutivity of equality in [30, p.74]. However, in NummSquared, substitu-
tion does not actually take place here.
Equals substitutive axiom: For a normalized large function ‘pred:

ax.eq.subst [‘pred] {%$x %y %z} \ 1 =

[~imp
[~= Sy %zl
[~imp
[‘pred %x 5%vI
[‘pred %x %z]

For a large function extension ‘pred, ‘Func.Lg.Ext.ax.eq.subst[‘pred] is true.

Proof. For each tagged small function extension ‘w = {'x, ‘y, ‘z}: If ‘Func.Lg.Ext.eq({‘y, ‘z}) and ‘pred({x, ‘y}) are true,
then ‘v = ‘z, and ‘pred({'x, ‘z}) is true. O

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 115 of 203

8.25.20 Hilbert

The following is somewhat similar to Hilbert’s transfinite axiom in [4].
Hilbert transfinite axiom: For a normalized large function ‘pred:

ax.h.transfinite[‘pred] {%x %y} \ 1 =
[~imp

‘pred

[~exist [‘pred] $x]

1

For a large function extension ‘pred, ‘Func.Lg.Ext.ax.h.transfinite[‘pred] is true.

Proof. For each tagged small function extension ‘z = {'x, ‘y}: If ‘pred(‘z) is true, then ~exist[‘pred](x) is true. O

8.25.21 Induction

Induction axiom: For a normalized large function ‘pred:

ax.induc|[‘pred] =
[~imp
[‘pred ~null]
[~imp
~induc.case|[‘pred]
‘pred
11

For a large function extension ‘pred, ‘Func.Lg.Ext.ax.induc|‘pred] is true.
Proof.

e If ‘pred(‘Func.Sm.Ext.null) is true, and “induc.case[‘pred] (‘Func.Sm.Ext.null) is true, then for each tagged small
function extension ‘%, ‘pred(‘x) is true - this is now proved by induction on ‘untag(‘x):

— Holds if x = ‘Func.Sm.Ext.null.

- If x# ‘Func.Sm.Ext.null: For each ‘dom(‘x) program ‘y, ‘pred(‘tagged(‘x, ‘y)) and ‘pred(x<‘y>) are true (by
inductive hypothesis).

* For each tagged small function extension ‘%, if ‘pred(‘Func.Sm.Ext.null) is true, and “induc.case[‘pred] (‘x) =
“induc.case[‘pred] (‘Func.Sm.Ext.null) is true, then ‘pred(‘x) is true. O

8.25.22 Leftovers

Since ‘Func.Lg.Ext.Null, ‘Func.Lg.Ext.Pair, ‘Func.Lg.Ext.dom and if-then-else are above described by cases, some of
their general properties are now described.
Null predicate otherwise axiom:

ax.Null.otw =

[~imp
[~not.= ~i ~null]
[~= ~Null 0]

1i

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 116 of 203

‘Func.Lg.Ext.ax.Null.otw is true.

Proof. For each tagged small function extension ‘x: If ‘Func.Lg.Ext.not.eq({’x, ‘Func.Sm.Ext.null}) is true, then

x# ‘Func.Sm.Ext.null, ‘Func.Lg.Ext.Null(‘x) = ‘Func.Sm.Ext.zero, and ‘Func.Lg.Ext.eq({‘Func.Lg.Ext.Null(‘x),

‘Func.Sm.Ext.zero}) is true. O
Pair predicate otherwise axiom:

ax.Pair.otw =

[~imp
[~not.= ~1 ({~left ~right}]
[~= ~Pair 0]

1;

‘Func.Lg.Ext.ax.Pair.otw is true.

Proof. For each tagged small function extension ‘x: If ‘Func.Lg.Ext.not.eq({’x, {'Func.Lg.Ext.left(x),

‘Func.Lg.Ext.right(x)}}) is true, then x is not a pair tagged small function extension, ‘Func.Lg.Ext.Pair(‘x) =

‘Func.Sm.Ext.zero, and ‘Func.Lg.Ext.eq({‘Func.Lg.Ext.Pair(‘x), ‘Func.Sm.Ext.zero}) is true. O
Domain null predicate axiom:

ax.dom.Null = [~= [~Null ~dom] 01;

‘Func.Lg.Ext.ax.dom.Null is true.

Proof. For each tagged small function extension ‘x: [‘Func.Lg.Ext.Null ‘Func.Lg.Ext.dom](‘x) =
‘Func.Lg.Ext.Null(‘domFuncExt(‘x)) = ‘Func.Sm.Ext.zero = ‘Func.Lg.Ext.zero(‘x). O
Domain pair predicate axiom:

ax.dom.Pair = [~= [~Pair ~dom] 01;

‘Func.Lg.Ext.ax.dom.Pair is true.

Proof. For each tagged small function extension x: [‘Func.Lg.Ext.Pair ‘Func.Lg.Ext.dom](‘x) =
‘Func.Lg.Ext.Pair(‘domFuncExt(‘x)) = ‘Func.Sm.Ext.zero = ‘Func.Lg.Ext.zero(‘x). O
Domain domain axiom:

ax.dom.dom = [~= [~dom ~dom] ~dom] ;

‘Func.Lg.Ext.ax.dom.dom is true.

Proof. For each tagged small function extension x: [‘Func.Lg.Ext.dom ‘Func.Lg.Ext.dom](‘x) = ‘dom-
FuncExt(‘domFuncExt(‘x)) = ‘domFuncExt(x) = ‘Func.Lg.Ext.dom(‘x). O
Domain if-then-else axiom: For normalized large functions ‘t and ‘e:

ax.dom.ite[‘'t ‘e] = [~= ~ite[~dom ‘t ‘el ~null];

For large function extensions ‘t and ‘e, ‘Func.Lg.Ext.ax.dom.ite[‘t ‘e] is true.

Proof. For each tagged small function extension x: ‘Func.Lg.Ext.dom(x) = ‘domFuncExt(x). “ite[‘Func.Lg.Ext.dom ‘t
‘e](x) = ‘Func.Sm.Ext.null = ‘Func.Lg.Ext.null(‘x). O
Domain idempotent axiom: For a normalized large function ‘x:

ax.dom.idempotent [‘x] =
[~= (~dom (~dom ‘x)) (~dom ‘x)1;

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18,2006 / 117 of 203

For a large function extension ‘%, ‘Func.Lg.Ext.ax.dom.idempotent|‘x] is true.

Proof. For each tagged small function extension ‘y: (‘Func.Lg.Ext.dom (‘Func.Lg.Ext.dom x))(‘y) = ‘dom-
FuncExt(‘y) ‘(domFuncExt(‘y) (‘x(‘y))) = ‘domFuncExt(‘y) (‘x(‘y)) = (‘Func.Lg.Ext.dom %) (‘y). O
If-then-else otherwise axiom: For normalized large functions ‘ifP, ‘thenP, ‘elseP:

ax.ite.otw['ifP ‘thenP ‘elseP] =

[~imp
[~not .= ‘ifP 0]
[~imp
[~not .= ‘ifP 1]
[~= ~ite[‘ifP ‘thenP ‘elseP] ~null]

11;

‘Func.Lg.Ext.ax.ite.otw is true.

Proof. For each tagged small function extension ‘x: If ‘Func.Lg.Ext.not.eq({'ifP(‘x), ‘Func.Sm.Ext.zero}) and
‘Func.Lg.Ext.not.eq({'ifP(‘x), ‘Func.Sm.Ext.one}) are true, then ‘ifP(‘x) is not Boolean, “ite[‘ifP ‘thenP ‘elseP](‘x) =
‘Func.Sm.Ext.null, and ‘Func.Lg.Ext.eq({"ite[‘ifP ‘thenP ‘elseP](x), ‘Func.Sm.Ext.null}) is true. O

8.26 Some inferences from true large function extensions
8.26.1 Modus ponens

The following is similar to rule of inference 1 in [36, p.6].
Modus ponens inference: For large function extensions ‘b and ‘c, if the following is true:
[‘Func.Lg.Ext.imp ‘b ‘c]
and the following is true:
‘b
then the following is true:

«

C

Proof. For each tagged small function extension ‘x: ‘Func.Lg.Ext.imp({'b(‘x), ‘c(‘x)}) is true. ‘b(‘x) is true. ‘c(*x) is true.
O

8.26.2 Specialization

The following is somewhat similar to the substitution rule in [4]. However, in NummSquared, substitution does not
actually take place here.

Specialization inference: For large function extensions ‘pred and ‘x, if the following is true:

‘pred

then the following is true:

[‘pred x]

Proof.
 For each tagged small function extension ‘y: ‘pred(‘y) is true.

 For each tagged small function extension ‘y: ‘pred(‘x(‘y)) is true. O

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 118 of 203

8.27 Some true normalized large functions

The above true large function extensions are now translated into true normalized large functions.
For a normalized large function %, ax.i.co.lg[‘x] istrue.

Proof. ‘ext(ax.i.co.lg] ‘x])= Func.Lg.Ext.ax.i.co.lg[‘ext(x)] is true. O
The other axioms are similar and are omitted.

8.28 Some inferences from true normalized large functions

The above inferences from true large function extensions are now translated into inferences from true normalized
large functions. Also, substitution inference (which is syntactic) is added.

8.28.1 Modus ponens

Modus ponens inference: For normalized large functions ‘b and ‘c, if the following is true:
[~imp ‘b ‘c]

and the following is true:

‘b

then the following is true:

‘c

8.28.2 Specialization

Specialization inference: For normalized large functions ‘pred and ‘x, if the following is true:
‘pred
then the following is true:
[‘pred 'x]

8.28.3 Substitution

The following is somewhat similar to substitution in [9, p.69].
Substitution inference: For normalized large functions ‘pred0, ‘predl, x and ‘y such that ‘subst(‘pred0, ‘predl, ‘x,
‘), if the following is true:
'yl
and the following is true:
‘predO
then the following is true:
‘predl

[~= 'x

Proof. ‘ext(x) = ‘ext(‘y). ‘ext(‘pred0) = ‘ext(‘predl) (by substitution theorem). ‘ext(‘pred0) is true. ‘ext(‘predl) is true.
O

8.29 Proofs

The above true normalized large functions correspond to NummSquared axioms. The above inferences from true
normalized large functions correspond to NummSquared inferences.

An identity large composition axiom contains a normalized large function ‘x.

An axiom is exactly one of the following:

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 119 of 203

* an identity large composition axiom
¢ The other axioms are similar and are omitted.

Proofs are defined inductively.
A proof is exactly one of the following:

* an axiom
* an inference
An inference is exactly one of the following:
* amodus ponens inference
¢ aspecialization inference
* asubstitution inference

A modus ponens inference contains <‘b, ‘c, ‘major, ‘minor> where ‘b and ‘c are normalized large functions, and

‘major and ‘minor are proofs.
A specialization inference contains <‘pred, ‘%, ‘general> where ‘pred and ‘x are normalized large functions, and

‘general is a proof.

A substitution inference contains <‘pred0, ‘predl, ‘%, ‘y, ‘equality, ‘before> where ‘pred0, ‘predl, x and ‘y are nor-
malized large functions, and ‘equality and ‘before are proofs.

This concludes the inductive definition.

8.30 Proposition and validity of a proof, and soundness theorem

For a proof ‘p, the proposition of ‘p (a normalized large function), denoted by ‘prp(‘p), is given by one of the follow-
ing mutually exclusive cases:

* ax.i.co.lg[‘x] if ‘pis an identity large composition axiom containing ‘x

* The other axiom cases are similar and are omitted.

e ‘cif ‘p is a modus ponens inference containing <‘b, ‘c, ‘major, ‘minor>

* [‘pred ‘x] if ‘pisa specialization inference containing <‘pred, ‘x, ‘general>

e ‘predl if p is a substitution inference containing <‘pred0, ‘predl, ‘%, ‘y, ‘equality, ‘before>
For a proof ‘p, ‘p follows iff exactly one of the following holds:

e ‘pisan axiom.

* ‘pis a modus ponens inference containing <‘b, ‘c, ‘major, ‘minor> and ‘prp(‘major) = [~imp ‘b ‘c], and
‘prp(‘minor) = ‘b.

* ‘pisaspecialization inference containing <‘pred, ‘x, ‘general>, and ‘prp(‘general) = ‘pred.

* ‘pis a substitution inference containing <‘pred0, ‘predl, ‘x, ‘y, ‘equality, ‘before>, ‘subst(‘pred0, ‘predl, x, ‘y),
‘prp(‘equality) = [~= ‘x ‘y], and ‘prp(‘before) = *pred0.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 120 of 203

For a proof ‘p, the property of ‘p being valid is defined by recursion on ‘p:
¢ If ‘p is an axiom, ‘p is valid iff ‘p follows.

* If ‘p is a modus ponens inference containing <‘b, ‘c, ‘major, ‘minor>, ‘p is valid iff ‘p follows, and ‘major and
‘minor are valid.

» If ‘p is specialization inference containing <‘pred, ‘%, ‘general>, ‘p is valid iff ‘p follows, and ‘general is valid.

e If ‘p is a substitution inference containing <‘pred0, ‘predl, ‘%, ‘y, ‘equality, ‘before>, ‘p is valid iff ‘p follows, and
‘equality and ‘before are valid.

Validity of a proof is computable.
The soundness theorem: For a proof ‘p, if ‘p is valid, then ‘prp(‘p) is true. (The soundness theorem, as are all the-
orems of the informal part, is relative to the languages of the informal part.)

Proof.
* Byinduction on ‘p.

* Holds if ‘p is an axiom.

* If ‘p is a modus ponens inference containing <‘b, ‘c, ‘major, ‘minor>: ‘prp(‘major) = [~imp ‘b ‘c].
‘prp(‘minor) = ‘b. ‘major and ‘minor are valid. [~imp ‘b ‘c] and ‘b are true (by inductive hypothesis).
‘cis true.

» If ‘p is a specialization inference containing <‘pred, ‘x, ‘general>: ‘prp(‘general) = *pred. ‘general is valid.
‘predis true (by inductive hypothesis). [‘pred ‘x] is true.

 If ‘p is a substitution inference containing <‘pred0, ‘predl, ‘¥, ‘y, ‘equality, ‘before>: ‘subst(‘pred0, ‘predl, %, ‘y).
‘prp(equality) = [~= ‘x ‘y]. ‘prp(‘before) = ‘pred0. ‘equality and ‘before are valid. [~= ‘x ‘y] and
‘pred0 are true (by inductive hypothesis). *‘predl is true. O

8.31 Quoted of a proof

The quoted of a proof is a tree normalized large function containing a tag, a list of normalized large function chil-
dren, and a list of proof children.

For a natural number ‘tag, and normalized large functions ‘children0 and ‘children1, the tree of ‘tag, ‘children0
and ‘childrenl, denoted by ‘tree(‘tag, ‘children0, ‘childrenl), is {‘norm(‘tag) ‘children0 ‘children1}.

For a natural number ‘tag, and tree normalized large functions ‘children0 and ‘childrenl, ‘tree(‘tag, ‘childreno,
‘childrenl) is a tree.

Let ‘axiomCount be the number of axiom cases.

For a proof ‘p, the tag of ‘p, denoted by ‘tag(‘p), is given by one of the following mutually exclusive cases:

* 0if ‘p is an identity large composition axiom
* The other axiom cases are similar and are omitted.
* ‘axiomCount if ‘p is a modus ponens inference

* ‘axiomCount + 1 if ‘p is a specialization inference

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 121 of 203

¢ ‘axiomCount + 2 if ‘p is a substitution inference

For an axiom ‘a, the quoted of ‘a (a tree normalized large function), denoted by ‘quoted(‘a), is given by one of the
following mutually exclusive cases:

* ‘tree(‘tag(‘a), "1{‘quoted(x)}, "1{}) if ‘a is an identity large composition axiom containing ‘x
¢ The other axiom cases are similar and are omitted.

For a proof ‘p, the quoted of ‘p (a tree normalized large function), denoted by ‘quoted(‘p), is defined by recursion
on ‘p:

¢ as above if ‘p is an axiom

* ‘tree(‘tag(‘p), "l{'quoted(‘b) ‘quoted(‘c)}, "l{’‘quoted(‘major) ‘quoted(‘minor)}) if ‘p is a modus ponens inference
containing <‘b, ‘c, ‘major, ‘minor>

* ‘tree(‘tag(‘p), "l{‘quoted(‘pred) ‘quoted(x)}, "l{‘quoted(‘general)}) if ‘p is specialization inference containing
<‘pred, %, ‘general>

* ‘tree(‘tag(‘p), "l{‘quoted(‘pred0) ‘quoted(‘predl) ‘quoted(‘x) ‘quoted(‘y)}, “1{‘quoted(‘equality) ‘quoted(‘before)})
if ‘p is a substitution inference containing <‘pred0, ‘predl, x, ‘y, ‘equality, ‘before>

8.32 Proofunquoted of a normalized large function

For a normalized large function f, the proof unquoted of ‘f, denoted by ‘unquotedProof(‘f), is the proof ‘p such that
‘quoted(‘p) = fif such exists; and ‘null otherwise.

For a normalized large function ‘f, ‘unquotedProof(‘f) is computable.

For a normalized large function 1, ‘f is a quoted proof iff ‘unquotedProof(‘f) # ‘null.

For a normalized large function 1, ‘fis a quoted proof iff there exists a proof ‘p such that ‘quoted(‘p) = f.

For a normalized large function 1, if ‘f is quoted proof, then fis a tree.

For a normalized large function 1, ‘fis a valid quoted proof iff ‘f is a quoted proof and ‘unquotedProof(‘f) is valid.

Proofs never appear directly in NummSquared programs. Instead, quoted proofs are created and manipulated by
functions (small and large). When necessary, a quoted proof may be unquoted for validity checking.

8.33 Russell’s paradox averted

It is interesting to examine how NummSquared averts Russell’s paradox.

Rus = (~i ~1i);
Rus.sm = ~restrict[Rus];
Rus.paradox = [Rus Rus.sm];

Of course, ‘Func.Lg.Ext.Rus(‘Func.Lg.Ext.Rus) cannot be constructed since ‘Func.Lg.Ext.Rus is a large function
extension.

For a tagged small function extension ‘%, ‘Func.Lg.Ext.Rus(‘x) = x(‘%).

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 122 of 203

For a tagged small function extension ‘%, ‘Func.Lg.Ext.Rus.sm(x) is the rule tagged small function extension ‘r
such that ‘domExt(‘r) = ‘domExt(‘x) and, for each ‘dom(‘r) program ‘y, ‘r<‘y> = ‘Func.Lg.Ext.Rus(‘tagged(‘r, ‘y)) =
‘tagged(‘r, ‘y)(‘tagged(T, ‘y)) = ‘tagged(’x, ‘y) (‘tagged(‘x, ‘v)).

For tagged small function extensions x and ‘y, ‘Func.Lg.Ext.Rus.sm(‘x)(‘y) =
‘Func.Lg.Ext.Rus.sm(‘x) <‘coer(‘Func.Lg.Ext.Rus.sm(x), ‘y)> = ‘Func.Lg.Ext.Rus.sm(‘x) <‘coer(‘x, ‘y)> = ‘tagged('x,
‘coer(‘x, ‘y))(‘tagged(‘x, ‘coer('x, ‘v))).

For a tagged small function extension ‘), ‘Func.Lg.Ext.Rus.paradox(x) =
‘Func.Lg.Ext.Rus(‘Func.Lg.Ext.Rus.sm(x)) = ‘Func.Lg.Ext.Rus.sm(‘x) (‘Func.Lg.Ext.Rus.sm(‘x)) = ‘tagged(‘x, ‘coer(‘x,
‘Func.Lg.Ext.Rus.sm('x))) (‘tagged(‘x, ‘coer(‘x, ‘Func.Lg.Ext.Rus.sm('x)))).

‘res(‘Func.Lg.Ext.Rus.paradox) = ‘Func.Lg.Ext.Rus.paradox(‘Func.Sm.Ext.null) =
‘Func.Sm.Ext.null(‘Func.Sm.Ext.null) = ‘Func.Sm.Ext.null.

Thus the result of Russell’s paradox is ‘Func.Sm.Ext.null, and Russell’s paradox does not cause any logical or com-
putational problems.

9 Conclusion

NummSquared is a formal language, and a new well-founded functional foundation for logic, mathematics and
computer science. Functions are the only fundamental concept in NummSquared. NummSquared includes reduc-
tion and ensures that it always terminates. NummSquared minimizes constraints on the logician, mathematician
or programmer. Because of coercion, there are no types, and functions are defined and called without proof, yet re-
duction terminates. NummSquared supports proof as desired but not required, is variable-free, supports reflection,
and has an interpreter called NsGo (work in progress) so the language can be practically used. NummSquared has a
classical logic, and attempts to follow set theory as much as possible.

NummSquared coercion is (loosely) a generalization to higher order functions of coercion (type conversion)
found in many programming languages. For coercion and computational reasons, the domain of a rule small func-
tion extension is represented by a domain extension. A domain extension contains the same information as a type in
type theory, but with a different purpose.

Among the important theorems about NummSquared are:

* domain extension irrelevance: domain extensions contain no more information than their domains
* tagirrelevance: because of the domain extension irrelevance theorem, tagging adds no information
* coercion stability: coercion does not make unnecessary changes

» extensionality: characterizes equals on rule tagged small function extensions

e substitution: substitution preserves equality

¢ soundness: the proposition of a valid proofis true

Among the important definitions about NummSquared are small function extensions, domain extensions, tagged
small function extensions, coercion (defined by well-founded tango), generalized result, large function extensions,
truth of a tagged small function extension or large function extension, Curry, recursion, equals, Hilbert, normalized
large functions, extension and truth of a normalized large function, reduction (terminating by definition), quoted
and unquoted for normalized large functions, macro expanded, substitution, large functions, normal forms and va-
lidity, proofs, proposition and validity of a proof, and quoted and unquoted for proofs.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 123 of 203

10 Preface to the formal part

Poohbist. NummSquared. Preface

10.1 The formal part

What follows is the formal part (work in progress) defining NummSquared within a Coq program.

10.2 A quick survey of Coq

A quick survey of some relevant aspects of Coq is provided here. These informal comments are purely explanatory.
[8] is the complete and definitive reference on Cog. For a tutorial on Coq, see [23].

10.2.1 Coq terms, contexts, environments, type-checking, reduction, normal forms and convertibility

Coq terms are defined in [8, section 4.1.3].

A Coq context is a list of variable declarations. A Coq environment is a list of global declarations. (See [8, section
4.2].) In NummSquared Formally, a Coq e-context is <‘e, ‘c> where ‘e is an environment and ‘c is a context.

In NummSquared Formally, for an e-context ‘ec = <‘e, ‘c>, then ‘ec is defined to be well-formed iff ‘e is well-
formed, and ‘c is valid in ‘e (see [8, section 4.2] for further explanation). For an e-context ‘ec, and terms ‘t and ‘T, [8,
section 4.2] defines whether or not ‘t type-checks as ‘T in ‘ec. For an e-context ‘ec, and terms ‘t and ‘T, one writes ‘t:‘T
in ‘ec iff ‘t type-checks as ‘T in ‘ec.

In NummSquared Formally, for an e-context ‘ec, and a term ‘t, then ‘T is defined to be a type for ‘tin ‘eciff ‘Tisa
term and ‘t:‘T in ‘ec. In NummSquared Formally, for an e-context ‘ec, and a term ‘t, then ‘t is defined to type-check in
‘ec iff there exists some type for ‘t in ‘ec. In NummSquared Formally, a Coq term-in-context is <‘ec, ‘t> where ‘ecis a
well-formed e-context, and ‘t is a term that type-checks in ‘ec. In NummSquared Formally, for a term-in-context ‘tc =
<‘ec, ‘t>, then ‘T is defined to be a type for ‘tc iff ‘T is a type for ‘t in ‘ec.

In NummSquared Formally, for an e-context ‘ec, and terms ‘t0 and ‘t1, then ‘t0 is defined to one-step reduce to ‘t1
in ‘ec iff ‘t0 |> ‘t1 in ‘ec (see [8, section 4.3] for further explanation).

For an e-context ‘ec, and a term ‘t0, then ‘t0 is a normal form in ‘ec iff there exists no term ‘t1 to which ‘t0 one-
step reduces in ‘ec. For an e-context ‘ec, and terms ‘t0 and ‘t1, then ‘t0 and ‘t1 are convertible in ‘ec iff there exists
some term ‘t2 such that ‘t0 and ‘t1 both zero-or-more-step reduce to ‘12 in ‘ec. (See [8, section 4.3].)

10.2.2 Coq sorts

A Coq sort is one of the following three Coq terms: Prop, Set and Type. (Actually, Coq internally replaces each oc-
curence of Type by one sort in an infinite hierarchy of sorts indexed by the natural numbers.) (See [8, section 4.1.1]
for more on sorts.)

For an e-context ‘ec, and a term ‘t, then:
* ‘tis a proposition in ‘ec iff ‘t: Prop in ‘ec

e ‘tisasetin ‘eciff ‘t:Serin ‘ec

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 124 of 203

* ‘tisatypein ‘eciff ‘t:Typein ‘ec (for some replacement of Type)

In any well-formed e-context, Prop:Type and Set: Type (for any replacements of Type). Furthermore, for a well-
formed e-context ‘ec, and a term ‘t, if ‘t is a proposition or set in ‘ec, then ‘t: Type in ‘ec (for any replacement of Type).
(See [8, sections 4.2, 4.3].) Thus, for a well-formed e-context ‘ec, and a term ‘t, then ‘t is a type in ‘ec iff ‘t:‘s for some
sort ‘s.

10.2.3 Coq proofs

For an e-context ‘ec, and terms ‘P and ‘p, if ‘P is a proposition in ‘ec, then ‘p is a proof of ‘P in ‘ec iff ‘p:‘P in ‘ec. Thus,
in Coq, proof checking is a special case of type checking. (See [8, "Introduction", section 4.1.1].)

For an e-context ‘ec, and a term ‘B, if ‘P is a proposition in ‘ec, then proving ‘P means writing some term ‘p such
that ‘p is a proof of ‘P in ‘ec.

10.2.4 Coq dependent products, functions and applications

For a term ‘A, a simple identifier x, and a term ‘B (which may include ‘x), the Coq term V(x: ‘A), ‘B is the dependent
product (a.k.a. dependent function space) from ‘x:‘A to ‘B.

For a term ‘A, a simple identifier), and a term ‘b (which may include %), the Coq term fun(‘x: ‘A) = ‘b is the
function that maps ‘x:‘A onto ‘b.

For terms ‘fand ‘a, the Coq term (‘f ‘a) is the application of ‘f to ‘a.

(See [8, sections 4.1.3, 4.2] for more on dependent products, functions and applications.)

10.2.5 Coq type casts

For terms ‘t and ‘T, the Coq term ‘t: ‘T is a type cast. For an e-context ‘ec, if ‘:‘T in ‘ec, then (‘t: ‘T):‘T in ‘ec. (See [8,
section 1.2.10].) Note that if “T0 is a type for (‘t: ‘T) in ‘ec, then “T0 is also a type for ‘t in ‘ec. Thus a type cast does not
give a term any new types. However, a type cast is useful for checking that a desired type for a term is indeed a type
for that term.

10.2.6 Coqmodules, commands and global declarations

A Coq file-level module is a list of Coq commands. A Coq file-level module may be hierarchically organized into Coq
intra-file modules. (There are Coq commands for starting and ending a Coq intra-file module.) A Coq intra-file mod-
ule is also a list of Cog commands. (See [8, sections 2.4, 2.5] for more on Coq intra-file and file-level modules.)

Among the Coq commands are global declarations. In NummSquared Formally, global declarations include
global assumptions, global definitions and inductive definitions. (See [8, section 4.2]. In [8, section 1.3], "declara-
tion" means just assumption.)

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 125 of 203

10.2.7 Naming of Coq modules and global declarations

A Coq qualified identifier is a list of one or more simple identifiers, separated by periods (.). (See [8, section 1.2.1].)

A file-level module has, as its short name, the simple identifier ‘x corresponding to the filename (excluding the
extension). However, the file-level module has, as its absolute name, the qualified identifier obtained by prefixing
‘x with a particular relative path. (See [8, section 2.5.1].) For example, you are now reading the file-level module
whose absolute name is PoohbistTechnology.NummSquared.v2006a0.Preface. The short name of PoohbistTechnol-
ogy.NummSquared.v2006a0.Preface is Preface.

An intra-file module or global declaration has, as its short name, a simple identifier x. (See [8, sections 1.3, 2.4].)
However, the intra-file module or global declaration has, as its absolute name, the qualified identifier obtained by
prefixing ‘x with the absolute name of the containing file-level module or intra-file module. (See [8, section 2.5.2].)

For a file-level module, intra-file module or global declaration ‘g, a qualified name of ‘g is a non-empty suffix of
the absolute name of ‘g. (See [8, section 2.5.2].)

10.3 NummSquared Formally Style

{NummSquared Formally Style} is a particular style of using Coq, and is used throughout the body of NummSquared
Formally. NummSquared Formally Style is not defined in the formal part of NummSquared Formally, but some rules
are given in informal comments.

10.3.1 Make desired types explicit using type casts

For clarity, each dependent product V(‘x: ‘A), ‘B is written within a type cast (V(x: ‘A), ‘B) : ‘s such that ‘s is a sort.

For clarity, each function fun(‘x1 : ‘A) = ‘b is written within a type cast (fun x1 = ‘b) : ((V(x0: A), ‘B) : ‘s). Note
that x0 : ‘A is written as part of the dependent product, and Coq can therefore infer x1 : ‘A for the function.

10.3.2 Use Type, not Set

Set is not be used. Typeis used instead. (Type is more flexible because Coq internally replaces each occurence of
Type by one sort in an infinite hierarchy of sorts.)

10.3.3 Make reusable terms into separate global declarations

Each dependent product or function is the content of a separate global declaration, so the dependent product or
function can be reused.

Coq local definitions (see [8, section 1.2.12]) are not used, since they are less reusable than global definitions.

10.3.4 Use underscore for hierarchical naming

The underscore character (_) is used as a separator to create hierarchical names within simple identifiers. (Although
intra-file modules could be used to create qualified names, that scheme would require the hierarchical naming
structure to correspond to the order of definitions, which is not always the case.)

The suffix _ Ty indicates a type. This suffix is used only when it is needed to distinguish a type.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 126 of 203

11 Fundamentals: Operators: Main

Poohbist. NummSquared.Fundamentals.Operators.Main

Poohbist. NummSquared.Fundamentals. Operators.Main defines operators, binary operators, trinary operators,
quaternary operators, quinary operators, and some fundamental operators.

11.1 Operators

An operator from A to Bis a function from a: Ato B.
Definition Op_Ty := (V(A: Type)(B: Type), Type) : Type.

Definition Op:=(funAB= (¥(a: A), B)): Op_Ty.

11.2 The constant operator

The constant operator from Ato Bonto b: Bis the operator from Ato Bmapping a: A onto b.
Definition Op_const_Ty :=
(V(A: Type)(B: Type)(b: B), (Op AB)) : Type.

Definition Op_const := (fun ABba= b) : Op_const_Ty.

11.3 Simple operators

A simple operator on Ais an operator from A to A.
Definition Op_Simp_Ty := (VY (A: Type), Type) : Type.

Definition Op_Simp := (fun A= (Op A A)) : Op_Simp_Ty.

11.4 The identity simple operator

The identity simple operator on A is the simple operator on A mapping a: A onto a.
Definition Op_Simp_identity_Ty := (VY (A: Type), (Op-Simp A)) : Type.

Definition Op_Simp_identity := (fun Aa= a) : Op_Simp_identity_Ty.

11.5 Binary operators

A binary operator from A0, Al to Bis an operator from A0 to an operator from Al to B.
Definition Op_Bin_Ty := (V(AO: Type)(Al : Type)(B: Type), Type) : Type.

Definition Op_Bin:= (fun AO Al B= (Op A0 (Op Al B))) : Op_Bin_Ty.

11.6 Connective binary operators

A connective binary operator from A to Bis a binary operator from A, Ato B.
Definition Op_Bin_Conn_Ty:= (VY (A: Type)(B: Type), Type) : Type.

Definition Op_Bin_Conn:= (fun AB= (Op-Bin AA B)) : Op_Bin_Conn_Ty.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 127 of 203

11.7 Simple binary operators

A simple binary operator on A is a connective binary operator from A to A.
Definition Op_Bin_Simp_Ty:= (V(A: Type), Type) : Type.

Definition Op_Bin_Simp := (fun A= (Op-Bin_-Conn A A)) : Op-Bin_Simp_Ty.

11.8 Trinary operators

A trinary operator from A0, Al, A2to Bis an operator from A0 to a binary operator from Al, A2to B.
Definition Op_Tri_Ty :=
(V(AO: Type)(Al : Type)(A2: Type)(B: Type), Type) : Type.

Definition Op_Tri:=
(fun AOAI A2B= (Op A0 (Op_Bin A1 A2 B))): Op_Tri_Ty.

11.9 Connective trinary operators

A connective trinary operator from A to Bis a trinary operator from A, A, Ato B.
Definition Op_Tri_Conn_Ty := (V(A: Type)(B: Type), Type) : Type.

Definition Op_Tri_Conn:= (fun AB= (Op_TriAAAB)) : Op_Tri_Conn_Ty.

11.10 Simple trinary operators

A simple trinary operator on A is a connective trinary operator from A to A.
Definition Op_Tri_Simp_Ty:= (V(A: Type), Type) : Type.

Definition Op_Tri_Simp := (fun A= (Op_Tri-Conn A A)) : Op_Tri_Simp_Ty.

11.11 Quaternary operators
A quaternary operator from A0, Al, A2, A3to Bis an operator from A0 to a trinary operator from Al, A2, A3to B.
Definition Op_Quat_Ty :=
(Y(AO: Type)(Al: Type)(A2: Type)(A3: Type)(B: Type), Type)
: Type.
Definition Op_Quat :=
(fun AOAI A2A3B= (Op A0 (Op-Tri A1 A2A3B))): Op-Quat_Ty.

11.12 Connective quaternary operators

A connective quaternary operator from Ato Bis a quaternary operator from A, A, A, Ato B.
Definition Op_Quat_Conn_Ty:= (V(A: Type)(B: Type), Type) : Type.

Definition Op_Quat_Conn :=
(funAB= (Op-Quat AAAAB)): Op-Quat_Conn_Ty.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 128 of 203

11.13 Simple quaternary operators

A simple quaternary operator on A is a connective quaternary operator from A to A.
Definition Op_Quat_Simp_Ty:= (V(A: Type), Type) : Type.

Definition Op_Quat_Simp := (fun A= (Op-Quat_Conn A A)) : Op_Quat_Simp_Ty.

11.14 Quinary operators

A quinary operator from A0, Al, A2, A3, A4to Bis an operator from A0 to a quaternary operator from Al, A2, A3, A4to
B.
Definition Op_Quin_Ty :=
(Vv
(A0: Type)
(Al: Type)
(A2: Type)
(A3: Type)
(A4: Type)
(B: Type),
Type
) : Type.
Definition Op_Quin :=
(fun AOAI A2A3 A4 B= (Op A0 (Op-Quat A1 A2A3A4B)))
: Op-Quin_Ty.

11.15 Connective quinary operators

A connective quinary operator from A to Bis a quinary operator from A, A, A, A, Ato B.
Definition Op_Quin_Conn_Ty := (V(A: Type)(B: Type), Type) : Type.

Definition Op_Quin_Conn :=
(funAB= (Op-Quin AAAAAB)): Op-Quin_Conn_Ty.

11.16 Simple quinary operators

A simple quinary operator on A is a connective quinary operator from A to A.
Definition Op_Quin_Simp_Ty := (Y (A: Type), Type) : Type.

Definition Op_Quin_Simp := (fun A= (Op-Quin_Conn A A)) : Op-Quin_Simp_Ty.

12 Fundamentals: Propositions: Main

Poohbist. NummSquared.Fundamentals. Propositions.Main

Poohbist. NummSquared. Fundamentals. Propositions.Main defines propositional predicates, binary propositional
predicates, trinary propositional predicates, quaternary propositional predicates, quinary propositional predicates,
some fundamental propositional predicates, the true proposition, and the false proposition.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 129 of 203

12.1 Dependencies

Require Import Poohbist. NummSquared.Fundamentals.Operators.Main.

12.2 Propositional predicates

A propositional predicate on A is an operator from A to Prop.
Definition Prp_Pred_Ty:= (V(A: Type), Type) : Type.

Definition Prp_Pred := (fun A= (Op A Prop)) : Prp_Pred_Ty.

12.3 The constant propositional predicate

The constant propositonal predicate on A onto P: Prop is the constant operator from A to Prop onto P.
Definition Prp_Pred_const_Ty :=
(Y(A: Type)(P: Prop), (Prp_Pred A)) : Type.

Definition Prp_Pred_const :=
(fun AP = (Op-const A Prop P)) : Prp_Pred_const_Ty.

12.4 Binary propositional predicates

A binary propositional predicate on A0, Al is a binary operator from A0, Al to Prop.
Definition Prp_Pred_Bin_Ty := (V(AO: Type)(Al : Type), Type) : Type.

Definition Prp_Pred_Bin :=
(fun A0 Al = (Op-Bin A0 Al Prop)) : Prp_Pred_Bin_Ty.

12.5 Connective binary propositional predicates

A connective binary propositional predicate on A is a binary propositional predicate on A, A.
Definition Prp_Pred_Bin_Conn_Ty:= (V(A: Type), Type) : Type.

Definition Prp_Pred_Bin_Conn :=
(fun A= (Prp-Pred_Bin AA)) : Prp-Pred_Bin_Conn_Ty.

12.6 Trinary propositional predicates

A trinary propositional predicate on A0, Al, A21is a trinary operator from A0, A1, A2 to Prop.
Definition Prp_Pred_Tri_Ty :=
(VY(AO: Type)(Al : Type)(A2: Type), Type) : Type.

Definition Prp_Pred_Tri :=
(funA0OAI A2= (Op_-Tri AO Al A2 Prop)) : Prp_Pred_Tri_Ty.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 130 of 203

12.7 Connective trinary propositional predicates

A connective trinary propositional predicate on Ais a trinary propositional predicate on A, A, A.
Definition Prp_Pred_Tri_Conn_Ty:= (V(A: Type), Type) : Type.

Definition Prp_Pred_Tri_-Conn :=
(fun A= (Prp_Pred_TriAAA)): Prp_Pred_Tri_Conn_Ty.

12.8 Quaternary propositional predicates

A quaternary propositional predicate on A0, Al, A2, A3is a quaternary operator from A0, Al, A2, A3to Prop.
Definition Prp_Pred_Quat_Ty :=
(V(AO: Type)(Al : Type)(A2: Type)(A3: Type), Type) : Type.

Definition Prp_Pred_Quat :=
(fun AOAI A2 A3 = (Op-Quat A0 A1 A2 A3 Prop)) : Prp_Pred_Quat_Ty.

12.9 Connective quaternary propositional predicates

A connective quaternary propositional predicate on A is a quaternary propositional predicate on A, A, A, A.
Definition Prp_Pred_Quat_Conn_Ty := (V(A: Type), Type) : Type.

Definition Prp_Pred_Quat_Conn :=
(fun A= (Prp_Pred_Quat AAAA)): Prp_Pred_Quat_Conn_Ty.

12.10 Quinary propositional predicates

A quinary propositional predicate on A0, Al, A2, A3, A4is a quinary operator from A0, Al, A2, A3, A4to Prop.
Definition Prp_Pred_Quin_Ty :=

(V(AO: Type)(Al: Type)(A2: Type)(A3: Type)(A4: Type), Type)

: Type.

Definition Prp_Pred_Quin :=
(fun A0 Al A2 A3 Ad = (Op_Quin A0 Al A2 A3 A4 Prop))
: Prp_Pred_Quin_Ty.

12.11 Connective quinary propositional predicates

A connective quinary propositional predicate on A is a quinary propositional predicate on 4, A, A, A, A.
Definition Prp_Pred_Quin_Conn_Ty:= (V(A: Type), Type) : Type.

Definition Prp_Pred_Quin_Conn :=
(fun A= (Prp_-Pred_Quin AAAAA)): Prp_Pred_Quin_Conn_Ty.

12.12 The true proposition
There is exactly one proof of the true proposition: the true proposition proof.

Prp_T is defined in the same way as True in Cogq.Init.Logic.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 131 of 203

Inductive Prp_T : Prop :=
| Prp_T_proof : Prp-T.

12.13 The false proposition
There are no proofs of the false proposition.

Prp_F is defined in the same way as False in Cogq.Init.Logic.
Inductive Prp_F : Prop :=.

13 Fundamentals: Booleans: Main

Poohbist. NummSquared.Fundamentals.Booleans.Main

Poohbist. NummSquared. Fundamentals. Booleans.Main defines Booleans, Boolean predicates, binary Boolean
predicates, trinary Boolean predicates, quaternary Boolean predicates, quinary Boolean predicates, some funda-
mental Boolean predicates, and an operator from Booleans to propositions.

13.1 Dependencies

Require Import Poohbist. NummSquared.Fundamentals.Operators.Main.
Require Import Poohbist. NummSquared.Fundamentals.Propositions.Main.

13.2 Booleans

A Boolean is exactly one of the following:

¢ the true Boolean

¢ the false Boolean

Boois defined in the same way as bool in Cogq.Init.Datatypes, except that Boo: Type whereas bool:Set.
Inductive Boo: Type:=

| Boo-t: Boo

| Boo_f : Boo.

13.3 Boolean predicates

A Boolean predicate on Ais an operator from A to Boo.
Definition Boo_Pred_Ty:= (V(A: Type), Type) : Type.

Definition Boo-Pred := (fun A= (Op A Boo)) : Boo_Pred_Ty.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 132 of 203

13.4 The constant Boolean predicate

The constant Boolean predicate on A onto b: Boois the constant operator from A to Boo onto b.
Definition Boo_Pred_const_Ty :=
(Y(A: Type)(b: Boo), (Boo-Pred A)) : Type.

Definition Boo_Pred_const :=
(fun Ab= (Op-const ABoo b)) : Boo_Pred_const_Ty.

13.5 Binary Boolean predicates

A binary Boolean predicate on A0, Al is a binary operator from A0, Al to Boo.
Definition Boo_Pred_Bin_Ty:= (V(A0: Type)(Al : Type), Type) : Type.

Definition Boo_Pred_Bin :=
(fun A0 Al = (Op-Bin A0 Al Boo)) : Boo_Pred_Bin_Ty.

13.6 Connective binary Boolean predicates

A connective binary Boolean predicate on Ais a binary Boolean predicate on A, A.
Definition Boo_Pred_Bin_Conn_Ty:= (V(A: Type), Type) : Type.

Definition Boo-Pred_Bin_Conn :=
(fun A= (Boo_Pred_Bin AA)) : Boo_Pred_Bin_Conn_Ty.

13.7 Trinary Boolean predicates

A trinary Boolean predicate on A0, Al, A2is a trinary operator from A0, Al, A2to Boo.
Definition Boo_Pred_Tri_Ty :=
(V(AO: Type)(Al : Type)(A2: Type), Type) : Type.

Definition Boo_Pred_Tri:=
(fun AOAI A2= (Op-Tri A0 Al A2 Boo)) : Boo_Pred_Tri_Ty.

13.8 Connective trinary Boolean predicates
A connective trinary Boolean predicate on A s a trinary Boolean predicate on A, A, A.
Definition Boo_Pred_Tri_Conn_Ty:= (V(A: Type), Type) : Type.

Definition Boo-Pred_Tri-Conn :=
(fun A= (Boo_Pred_Tri AAA)) : Boo_Pred_Tri_Conn_Ty.

13.9 Quaternary Boolean predicates

A quaternary Boolean predicate on A0, Al, A2, A3is a quaternary operator from A0, Al, A2, A3to Boo.
Definition Boo_Pred_Quat_Ty :=
(V(AO: Type)(Al : Type)(A2: Type)(A3: Type), Type) : Type.

Definition Boo_Pred_Quat :=
(fun AOAI A2 A3 = (Op-Quat A0 Al A2 A3 Boo)) : Boo_Pred_Quat_Ty.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 133 of 203

13.10 Connective quaternary Boolean predicates

A connective quaternary Boolean predicate on A is a quaternary Boolean predicate on A, A4, A, A.
Definition Boo_Pred_Quat_Conn_Ty:= (V(A: Type), Type) : Type.

Definition Boo_Pred_Quat_Conn :=
(fun A= (Boo_Pred_Quat AAAA)): Boo_Pred_Quat_Conn_Ty.

13.11 Quinary Boolean predicates

A quinary Boolean predicate on A0, Al, A2, A3, A4is a quinary operator from A0, Al, A2, A3, A4to Boo.
Definition Boo_Pred_Quin_Ty :=

(V(AO: Type)(Al : Type)(A2: Type)(A3: Type)(A4: Type), Type)

: Type.
Definition Boo_Pred_Quin :=

(funA0OAI A2 A3 A4= (Op-Quin A0 Al A2 A3 A4 Boo))

: Boo_Pred_Quin_Ty.

13.12 Connective quinary Boolean predicates

A connective quinary Boolean predicate on Ais a quinary Boolean predicate on A, A, A, A, A.
Definition Boo_Pred_Quin_Conn_Ty:= (V(A: Type), Type) : Type.

Definition Boo_Pred_Quin_Conn :=
(fun A= (Boo_-Pred_Quin AAAAA)): Boo_Pred_Quin_Conn_Ty.

13.13 Boolean to proposition
(Boo_to_Prp b) is the true proposition if b; and the false proposition otherwise.

Boo_to_Prpis defined in the same way as Is_true in Coq.Bool.Bool.
Definition Boo_to_Prp:= (fun b=
if b
return Prop
then Prp_T
else Prp_F
) : (Prp-Pred Boo).

13.14 Boolean equals

(Boo_eq b0 b1) is the true Boolean if b0 and b1 are structurally equal; and the false Boolean otherwise.
Definition Boo_eq := (fun b0 bl =

match b0, bl

return Boo

with

| Boo_t, Boo_t = Boo-_t

| Boo_f, Boo_f = Boo_t

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 134 of 203

| -, - = Boo-f
end
) : (Boo-Pred_Bin_Conn Boo).

13.15 Boolean not

(Boo-not b) is the false Boolean if b; and the true Boolean otherwise.
Definition Boo_not := (fun b=

if b

return Boo

then Boo_f

else Boo_t

) : (Boo-Pred Boo).

14 Fundamentals: Naturals: Main

Poohbist. NummSquared. Fundamentals. Naturals.Main

Poohbist. NummSquared. Fundamentals. Naturals.Main defines natural numbers, and some operators on natural
numbers.

14.1 Dependencies

Require Import Poohbist. NummSquared.Fundamentals.Operators.Main.
Require Import Poohbist. NummSquared. Fundamentals.Booleans.Main.

14.2 Natural numbers

A natural number is exactly one of the following:

¢ the zero natural number

¢ for some natural number m, the successor natural number of m

Nat is defined in the same way as nat in Cogq.Init.Datatypes, except that Nat: Type whereas nat:Set.
Inductive Nat : Type :=

| Nat_z: Nat

| Nat_s: (Op_Simp Nat).

14.3 Abbreviations for some natural numbers

Definition Nat_nl := (Nat_s Nat_z).

Definition Nat_n2 := (Nat.s Nat_nl).
Definition Nat_n3:= (Nat_s Nat_n2).
Definition Nat_n4 := (Nat.s Nat_n3).

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 135 of 203

Definition Nat_n5 := (Nat_s Nat_n4).
Definition Nat_n6 := (Nat_s Nat_n5).
Definition Nat_n7 := (Nat.s Nat_n6).
Definition Nat_n8:= (Nat_s Nat_n7).
Definition Nat_n9 := (Nat.s Nat_n8).
Definition Nat_n10 := (Nat_s Nat_n9).
Definition Nat_nll := (Nat_s Nat_nl10).
Definition Nat_n12:= (Nat_s Nat_nll).
Definition Nat_n13:= (Nat_s Nat_nl12).
Definition Nat_ni14:= (Nat_s Nat-nl3).
Definition Nat_n15 := (Nat_s Nat_nl4).
Definition Nat_nl16 := (Nat.s Nat_nl5).
Definition Nat_n17 := (Nat_s Nat_n16).
Definition Nat_n18:= (Nat_s Nat_-nl7).
Definition Nat_n19:= (Nat_s Nat_nl8).
Definition Nat_n20:= (Nat_s Nat_nl19).
Definition Nat_n21 := (Nat_s Nat_n20).
Definition Nat_n22:= (Nat_s Nat_n21).
Definition Nat_n23:= (Nat_s Nat_n22).
Definition Nat_n24 := (Nat_s Nat_n23).
Definition Nat_n25 := (Nat.s Nat_n24).
Definition Nat_n26 := (Nat_s Nat_n25).
Definition Nat_n27 := (Nat_s Nat_n26).
Definition Nat_n28:= (Nat_s Nat_n27).
Definition Nat_n29 := (Nat_s Nat_n28).
Definition Nat_n30:= (Nat_s Nat_n29).
Definition Nat_n31 := (Nat_s Nat_n30).
Definition Nat_n32:= (Nat_s Nat_n31).
Definition Nat_n33:= (Nat_s Nat_n32).
Definition Nat_n34 := (Nat_s Nat_n33).
Definition Nat_n35 := (Nat_s Nat_n34).
Definition Nat_n36 := (Nat.s Nat_n35).
Definition Nat_n37 := (Nat_s Nat_n36).
Definition Nat_n38:= (Nat_s Nat-n37).
Definition Nat_n39:= (Nat_s Nat_n38).
Definition Nat_n40 := (Nat_s Nat_n39).
Definition Nat_n41 := (Nat_s Nat_n40).
Definition Nat_n42 := (Nat_s Nat_n41).
Definition Nat_n43:= (Nat_s Nat_n42).
Definition Nat_n44 := (Nat_s Nat_n43).
Definition Nat_n45 := (Nat_s Nat_n44).
Definition Nat_n46 := (Nat_s Nat_n45).
Definition Nat_n47 := (Nat_s Nat_n46).
Definition Nat_n48:= (Nat_s Nat_n47).
Definition Nat_n49 := (Nat_s Nat_n48).
Definition Nat_n50 := (Nat_s Nat_n49).

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 136 of 203

Definition Nat_n51 := (Nat_s Nat-n50).
Definition Nat_n52:= (Nat_s Nat_n51).
Definition Nat_n53:= (Nat_s Nat_-n52).
Definition Nat_n54 := (Nat_s Nat_n53).
Definition Nat_n55 := (Nat_s Nat_n54).
Definition Nat_n56 := (Nat_s Nat_n55).
Definition Nat_n57 := (Nat_s Nat_n56).
Definition Nat_n58:= (Nat_s Nat-n57).
Definition Nat_n59 := (Nat_s Nat_n58).
Definition Nat_n60 := (Nat_s Nat_n59).
Definition Nat_n61 := (Nat_s Nat_n60).
Definition Nat_n62 := (Nat_s Nat_n61).
Definition Nat_n63:= (Nat_s Nat_n62).
Definition Nat_n64:= (Nat_s Nat-n63).
Definition Nat_n65 := (Nat_s Nat_n64).
Definition Nat_n66 := (Nat.s Nat_n65).
Definition Nat_n67 := (Nat_s Nat_n66).
Definition Nat_n68:= (Nat_s Nat_n67).
Definition Nat_n69 := (Nat_s Nat_n68).
Definition Nat_n70:= (Nat_s Nat_n69).
Definition Nat_n71 := (Nat_s Nat-n70).
Definition Nat_n72:= (Nat_s Nat_n71).
Definition Nat_n73:= (Nat_s Nat-n72).
Definition Nat_n74 := (Nat_s Nat_n73).
Definition Nat_n75 := (Nat.s Nat_-n74).
Definition Nat_n76 := (Nat_s Nat_n75).
Definition Nat_n77 := (Nat_s Nat_n76).
Definition Nat_n78:= (Nat_s Nat_n77).
Definition Nat_n79:= (Nat_s Nat_n78).
Definition Nat_n80 := (Nat_s Nat-n79).
Definition Nat_n81 := (Nat_s Nat_n80).
Definition Nat_n82 := (Nat_s Nat_n81).
Definition Nat_n83:= (Nat_s Nat_n82).
Definition Nat_n84 := (Nat_s Nat_-n83).
Definition Nat_n85 := (Nat_s Nat_n84).
Definition Nat_n86 := (Nat.s Nat_n85).
Definition Nat_n87 := (Nat_s Nat_né86).
Definition Nat_n88 := (Nat_s Nat_n87).
Definition Nat_n89 := (Nat_s Nat_n88).
Definition Nat_n90 := (Nat_s Nat_n89).
Definition Nat_n91 := (Nat_s Nat_n90).
Definition Nat_n92:= (Nat_s Nat_n91).
Definition Nat_n93:= (Nat_s Nat-n92).
Definition Nat_n94 := (Nat_s Nat_n93).
Definition Nat_n95 := (Nat_s Nat_n94).
Definition Nat_n96 := (Nat_s Nat_n95).

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally

October 18, 2006 / 137 of 203

Definition Nat_n97 := (Nat_s Nat_n96).
Definition Nat_n98:= (Nat_s Nat_n97).
Definition Nat_n99 := (Nat_s Nat_n98).
Definition Nat_n100:= (Nat_s Nat_n99).

Definition Nat_n101 := (Nat_s Nat_n100).
Definition Nat_n102:= (Nat_s Nat_nl0I).
Definition Nat_n103:= (Nat_s Nat_nl102).
Definition Nat_n104 := (Nat-s Nat-n103).
Definition Nat_n105 := (Nat_s Nat_nl04).
Definition Nat_n106 := (Nat_s Nat_n105).
Definition Nat_n107 := (Nat_s Nat_n106).
Definition Nat_n108:= (Nat_s Nat_-nl107).
Definition Nat_n109:= (Nat_s Nat_nl08).
Definition Nat_n110:= (Nat-s Nat_n109).
Definition Nat_nll1 := (Nat_s Nat_nl110).
Definition Nat_n112:= (Nat_s Nat_nl1l11).
Definition Nat_n113:= (Nat_s Nat_nl12).
Definition Nat_n114:= (Nat.s Nat_nl13).
Definition Nat_n115:= (Nat_s Nat-nl14).
Definition Nat_n116 := (Nat_s Nat_nl15).
Definition Nat_n117 := (Nat.s Nat_-nl16).
Definition Nat_n118:= (Nat_s Nat_nl17).
Definition Nat_-n119:= (Nat_s Nat_n118).
Definition Nat_n120:= (Nat_s Nat_nl19).
Definition Nat_n121 := (Nat.s Nat_n120).
Definition Nat_ni122:= (Nat_s Nat_nl2I).
Definition Nat_n123:= (Nat.s Nat_n122).
Definition Nat_ni124:= (Nat_s Nat_nl23).
Definition Nat_n125 := (Nat_s Nat_n124).
Definition Nat_n126 := (Nat_s Nat_-nl25).

14.4 Natural number equals

(Nat_eq m0 m1) is the true Boolean if m0 and m1 are structurally equal; and the false Boolean otherwise.

Definition Nat_eq := (

fix fp(mO0: Nat)(ml : Nat){struct moO} : Boo :=

match mo0, ml

return Boo

with

| Nat_z, Nat_z = Boo_t

| Nat_s mOPre, Nat_s m1Pre = (fp mOPre m1Pre)

| -, -= Boo-f
end
) : (Boo_Pred_Bin_Conn Nat).

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally

October 18, 2006 / 138 of 203

14.5 Natural number iterate

(Nat_iter A f a m) applies f m-times starting with a.
Definition Nat_iter_Ty :=
(V(A: Type)(f : (Op-Simp A)), (Op-Bin A Nat A)) : Type.

Definition Nat_iter:= (fun Af a=
fix fp(m: Nat){struct m} : A:=
match m
return A
with
| Nat_.z= a
| Nat_s mPre = (f (fp mPre))
end
) : Nat_iter_Ty.

14.6 Natural number add
(Nat-add m n) is m + n.

Nat_add is somewhat similar in concept to the plus function in [28, p.234].
Definition Nat_add := (fun m =
fix fp(n: Nat){struct n} : Nat :=
match n
return Nat
with
| Nat_.z= m
| Nat_s nPre = (Nat_s (fp nPre))
end
) : (Op-Bin_Simp Nat).

14.7 Natural number multiply

(Nat-mult mn)is m* n.

Nat_mult is somewhat similar in concept to the mult function in [28, p.235].
Definition Nat_mult := (fun m =
fix fp(n: Nat){struct n} : Nat :=
match n
return Nat
with
| Nat_z = Nat_z
| Nat_s nPre = (Nat-add (fp nPre) m)
end
) : (Op-Bin_Simp Nat).

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 139 of 203

15 Fundamentals: Naturals: Efficient: Main

Poohbist. NummSquared. Fundamentals. Naturals. Efficient. Main

Poohbist. NummSquared. Fundamentals.Naturals.Efficient. Main defines efficient natural numbers, and some op-
erators on efficient natural numbers.

15.1 Dependencies

Require Import Poohbist. NummSquared. Fundamentals.Booleans.Main.

15.2 Efficient natural numbers

Parameter Nat_Eff : Type.

15.3 Efficient natural number equals
Parameter Nat_Eff-eq: (Boo_Pred_Bin_Conn Nat_Eff).

16 Fundamentals: Units: Main

Poohbist. NummSquared.Fundamentals. Units.Main

Poohbist. NummSquared. Fundamentals. Units.Main defines units, and some operators on units.

16.1 Dependencies

Require Import Poohbist. NummSquared.Fundamentals.Booleans.Main.

16.2 Units
There is exactly one unit: the unit element.

Uniis defined in the same way as unit in Coq.Init.Datatypes, except that Uni: Type whereas unit:Set.
Inductive Uni: Type:=
| Uni_elem: Uni.

16.3 Unit equals

(Uni_eq u0 ul) is the true Boolean if #0 and u1 are structurally equal; and the false Boolean otherwise. Of course,
(Uni-eq u0 ul) is always the true Boolean.
Definition Uni_eq:= (fun u0 ul = Boo-t) : (Boo_Pred_Bin_Conn Uni).

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 140 of 203

17 Fundamentals: Optionals: Main

Poohbist. NummSquared.Fundamentals.Optionals.Main

Poohbist. NummSquared.Fundamentals.Optionals.Main defines optionals, and some operators on optionals.

17.1 Dependencies

Require Import Poohbist. NummSquared.Fundamentals.Operators.Main.
Require Import Poohbist. NummSquared. Fundamentals.Booleans.Main.

17.2 Optionals

An optional A is exactly one of the following:

* the none optional A

 for some a: A, the one optional A containing a

Optional is defined in the same way as option in Coq.Init.Datatypes, except that Optional: Type whereas op-
tion:Set.
Inductive Optional(A: Type) : Type =

| Optional_none: (Optional A)

| Optional_one: (Op A (Optional A)).

17.3 Optional related to

(Optional_rel A0 Al rel01 00 o01) is the true Boolean if 00 and oI have the same shape, and their corresponding ele-
ments a0: A0, al : Al satisfy (rel01 a0 al); and the false Boolean otherwise.
Definition Optional_rel_Ty :=
(Vv
(A0: Type)
(AI: Type)
(rel01: (Boo_Pred_Bin A0 Al)),
(Boo_Pred_Bin (Optional A0) (Optional Al))
) Type.

Definition Optional_rel := (fun A0 Al rel01 00 01 =
match 00, o1
return Boo
with
| Optional_none, Optional_none = Boo_t
| Optional_one a0, Optional_one al = (rel01 a0 al)
| -, -= Boo_f
end
) : Optional_rel_Ty.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 141 of 203

17.4 Optional related to, connective

(Optional_rel_conn A relA 00 ol) is (Optional_rel A A relA 00 ol).
Definition Optional_rel_conn_Ty :=

(Vv
(A: Type)
(relA: (Boo-Pred-Bin_Conn A)),
(Boo_Pred_Bin_Conn (Optional A))
) : Type.

Definition Optional_rel_conn :=
(fun A relA 00 01 = (Optional_rel AArelAo0ol))
: Optional_rel_conn_Ty.

17.5 Optional non-empty

(Optional_nonEmpty A o) is the false Boolean if o is the none optional A; and the true Boolean otherwise.
Definition Optional_nonEmpty_Ty :=
(Y(A: Type), (Boo-Pred (Optional A))) : Type.

Definition Optional_nonEmpty := (fun A o =
match o
return Boo
with
| Optional_none = Boo_f
| Optional_one a = Boo_t
end
) : Optional_nonEmpty_Ty.

17.6 Optional empty

(Optional_empty A o) is (Boo_not (Optional_nonEmpty A 0)).
Definition Optional_empty_Ty =
(Y(A: Type), (Boo-Pred (Optional A))) : Type.

Definition Optional_empty := (fun A 0 =
(Boo_not (Optional_nonEmpty A 0))
) : Optional_empty_Ty.

17.7 The optional one operator

(Optional_Op-one A B opA) is the operator from A to an optional B mapping a: A onto the one optional B containing

(opA a).
Definition Optional_-Op-one_Ty :=
(Vv
(A: Type)
(B: Type)

(opA: (Op A B)),

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 142 of 203

(Op A (Optional B))
) : Type.

Definition Optional_Op_one :=
(fun A B opA a= (Optional_one B (opA a))) : Optional_Op_-one_Ty.

17.8 Optional select

(Optional_select A B selectA o) is the empty optional Bif ois the empty optional A; and (selectA a) if o is the one op-
tional A containing a.
Definition Optional_select_Ty :=
(Vv
(A: Type)
(B: Type)
(selectA: (Op A (Optional B))),
(Op (Optional A) (Optional B))
) : Type.

Definition Optional_select := (fun A B selectA 0 =
match o
return (Optional B)
with
| Optional_none = (Optional_none B)
| Optional_one a = (selectA a)
end
) : Optional_select_Ty.

17.9 Optional select, to element

(Optional_select_toElem A B selectA o) is (Optional_select A B (Optional_Op-one A B selectA) o).
Definition Optional_select_toElem_Ty :=

(Vv

(A: Type)

(B: Type)

(selectA: (Op A B)),

(Op (Optional A) (Optional B))
) : Type.

Definition Optional_select_toElem := (fun A B selectA 0 =
(Optional_select A B (Optional_Op_-one A B selectA) o)
) : Optional_select_toElem_Ty.

18 Fundamentals: Booleans: And Optionals

Poohbist. NummSquared.Fundamentals.Booleans.AndOptionals

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 143 of 203

Poohbist. NummSquared. Fundamentals.Booleans.AndOptionals defines some operators relating Booleans and
optionals.

18.1 Dependencies

Require Import Poohbist. NummSquared. Fundamentals.Operators.Main.
Require Import Poohbist. NummSquared.Fundamentals.Booleans.Main.
Require Import Poohbist. NummSquared.Fundamentals.Units.Main.
Require Import Poohbist. NummSquared.Fundamentals.Optionals.Main.

18.2 Boolean to optional

(Boo_to_Optional A b a) is the one optional A containing a if b; and the none optional A otherwise.
Definition Boo_to_Optional_Ty :=

(Vv
(A: Type),
(Op-Bin Boo A (Optional A))
) : Type.
Definition Boo_to_Optional := (funAba=
if b
return (Optional A)

then (Optional_one A a)
else (Optional_none A)
) : Boo_to_Optional_Ty.

18.3 The Boolean optional operator

(Bool_Op_Optional A predA) is the operator from A to an optional A mapping a: A onto (Boo-to-Optional A (predA a)
a.
Definition Boo_Op_Optional_Ty :=

(Vv
(A: Type)
(predA: (Boo_Pred A)),
(Op A (Optional A))

) : Type.

Definition Boo_Op_Optional :=
(fun A predA a = (Boo_to_Optional A (predA a) a))
: Boo_Op_Optional_Ty.

19 Fundamentals: Choices: Main

Poohbist. NummSquared.Fundamentals. Choices.Main

Poohbist. NummSquared.Fundamentals. Choices.Main defines choices, and some operators on choices.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 144 of 203

19.1 Dependencies

Require Import Poohbist. NummSquared.Fundamentals.Operators.Main.
Require Import Poohbist. NummSquared. Fundamentals.Booleans.Main.
Require Import Poohbist. NummSquared.Fundamentals. Units.Main.
Require Import Poohbist. NummSquared. Fundamentals.Optionals.Main.

19.2 Choices

A choice F, Sis exactly one of the following:

e for f: F, the first choice F, S containing f

e fors: S, the second choice F, S containing s

Choiceis defined in the same way as sum in Coq.Init. Datatypes, except that Choice: Type whereas sum:Set.
Inductive Choice(F : Type)(S: Type) : Type :=

| Choice_first : (Op F (Choice F S))

| Choice_second : (Op S (Choice F S)).

19.3 Choice related to

(Choice_rel FO SO F1 S1 relF01 relS01 c0 cl) is the true Boolean if c0 and cI have the same shape, and their corre-
sponding elements f0: FO, fI: F1 satisfy (relF01 f0 f1) or sO: SO, s1: S1 satisfy (relS01 s0 s1); and the false Boolean
otherwise.

Definition Choice_rel_Ty :=

(Vv
(FO: Type)
(S0: Type)
(FI: Type)
(S1: Type)
(relF01 : (Boo_Pred_Bin FO F1))
(relS01 : (Boo-Pred_Bin S0 S1)),
(Boo-Pred_Bin (Choice F0 S0) (Choice F1 S1))
) : Type.
Definition Choice_rel := (fun F0 SO F1 S1 relF01 relS01 c0 c1 =
match c0, cl
return Boo
with

| Choice_first f0, Choice_first f1 = (relF01 f0 f1)

| Choice_second s0, Choice_second s1 = (relS01 s0 s1)
| -, - = Boo-f

end

) : Choice_rel_Ty.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 145 of 203

19.4 Choice related to, connective

(Choice_rel_conn F S relF relS c0 cl) is (Choice-rel F S F S relF relS c0 cl).
Definition Choice_rel_conn_Ty :=
(V
(F: Type)
(S: Type)
(relF : (Boo_Pred_Bin_Conn F))
(relS : (Boo_Pred_Bin_Conn S)),
(Boo_Pred_Bin_Conn (Choice F S))
) : Type.
Definition Choice_rel_conn :=
(fun F SrelF relS c0 c1 = (Choice_rel F SF SrelF relS cO cl))
: Choice_rel_conn_Ty.

19.5 Choice to optional

(Choice_to_Optional A ¢) is the one optional A containing a if cis the first choice A, unit containing a; and the none
optional A otherwise.
Definition Choice_to_Optional_Ty :=
(Vv
(A: Type),
(Op (Choice A Uni) (Optional A))
) : Type.

Definition Choice_to_Optional := (fun A c=
match ¢
return (Optional A)
with
| Choice_first a= (Optional_one A a)
| Choice_second elem = (Optional_none A)
end
) : Choice_to-Optional_Ty.

19.6 Choice merge

(Choice_merge A c) is awhere cis the first or second choice A, A containing a.
Definition Choice_merge_Ty :=
(Y(A: Type), (Op (Choice A A) A)) : Type.

Definition Choice_merge:= (fun A c =
match ¢
return A
with
| Choice_firsta= a
| Choice_second a= a
end

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 146 of 203

) : Choice_merge_Ty.

20 Fundamentals: Pairs: Main

Poohbist. NummSquared. Fundamentals. Pairs.Main

Poohbist. NummSquared. Fundamentals.Pairs.Main defines pairs, triples, quadruples, and some operators on
pairs, triples and quadruples.

20.1 Dependencies

Require Import Poohbist. NummSquared.Fundamentals.Operators.Main.
Require Import Poohbist. NummSquared.Fundamentals.Booleans.Main.

20.2 Pairs

A pair L, Rnamed p contains all of the following:
¢ the left of p, whichis an L
¢ the right of p, which isan R

Record Pair(L: Type)(R: Type) : Type := Pair_ctor {
Pair_left: L,
Pair_right: R

20.3 Pair related to

(Pair_rel LO RO L1 R1 relL01 relR01 pO p1) is the true Boolean if (relL0I (Pair_left L0 RO p0) (Pair_left L1 R1 p1)) and
(relRO1 (Pair_right LO RO p0) (Pair-right L1 R1 p1)); and the false Boolean otherwise.
Definition Pair_rel_Ty :=
(Vv
(LO: Type)
(RO: Type)
(LI: Type)
(RI: Type)
(relLO1: (Boo-Pred_Bin L0 L1))
(relRO1 : (Boo_Pred_Bin RO RI)),
(Boo-Pred_Bin (Pair LO RO) (Pair L1 R1))
) : Type.
Definition Pair_rel := (fun LO RO L1 RI relLOI relRO1 p0 p1 =
if (relLO1 (Pair_left LO RO p0) (Pair_left L1 R1 pI))
return Boo
then (relR0O1 (Pair-right LO RO p0) (Pair_right L1 RI p1))
else Boo_f
) : Pair_rel_Ty.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally

October 18, 2006 / 147 of 203

20.4 Pair related to, connective

(Pair_rel_conn L R relL relR p0 p1l) is (Pair_rel LR L R relL relR p0 p1).
Definition Pair_rel_conn_Ty :=

(Vv
(L: Type)
(R: Type)
(relL : (Boo_Pred_Bin_Conn L))
(relR : (Boo_Pred_Bin_Conn R)),
(Boo_Pred_Bin_Conn (Pair L R))
) : Type.

Definition Pair_rel_conn:=
(fun L RrelL relR p0 pl = (Pair_rel LR L RrelL relR p0 pI))
: Pair_rel_conn_Ty.

20.5 Triples

A triple LO, L1, R1is a (Pair LO (Pair LI R1)).
Definition Trip_Ty:= (VY(LO: Type)(L1: Type)(R1: Type), Type) : Type.

Definition Trip:= (fun LO L1 R1 = (Pair LO (Pair L1 R1))) : Trip_Ty.

20.6 Tripleleft 0

(Trip-left0 LO L1 R1 t) is the left of £.
Definition Trip_left0_Ty :=

(Vv

(LO: Type)

(L1: Type)

(R1: Type),

(Op (Trip LO L1 R1) LO)
) : Type.

Definition Trip_left0 :=
(fun LO L1 R1 t = (Pair_left LO (Pair L1 R1) t)) : Trip_left0_Ty.

20.7 Tripleright0

(Trip-right0 LO L1 R1 1) is the right of ¢.
Definition Trip_right0-Ty :=

(Vv

(LO: Type)

(L1: Type)

(RI: Type),

(Op (Trip LO L1 R1) (Pair L1 R1))
) : Type.

Definition Trip_right0 :=

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 148 of 203

(fun LO L1 R1 t = (Pair_right LO (Pair L1 R1) t)) : Trip_right0_Ty.

20.8 Tripleleft 1

(Trip-left1 LO L1 R1 t) is the right-left of «.
Definition Trip_leftl_Ty :=

(Vv

(LO: Type)

(L1: Type)

(RI: Type),

(Op(Trip LOL1 R1) L1)
) : Type.

Definition Trip_leftl :=
(fun LO L1 RI t = (Pair_left L1 R1 (Trip-right0 LO L1 R1t)))
: Trip_leftl_Ty.

20.9 Tripleright1

(Trip-rightl LO L1 R1 t) is the right-right of «.
Definition Trip_right1_Ty :=

(Vv

(LO: Type)

(L1: Type)

(RI: Type),

(Op (Trip LO L1 RI) R1)
) : Type.

Definition Trip_rightl :=
(fun LO L1 R1 t = (Pair_right L1 R1 (Trip_right0 LO L1 R1 1)))
: Trip_right1_Ty.

20.10 Quadruples

A quadruple L0, L1, L2, R2is a (Pair LO (Trip L1 L2 R2)).
Definition Quad_Ty :=

(Vv
(LO: Type)
(L1: Type)
(L2: Type)
(R2: Type),
Type

) : Type.

Definition Quad := (fun LOLI L2 R2=
(Pair LO (Trip L1 L2 R2))
) : Quad_-Ty.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally

October 18, 2006 / 149 of 203

20.11 Quadruple left 0

(Quad_-left0 LO L1 L2 R2 1) is the left of g.
Definition Quad_left0_Ty :=

(Vv

(LO: Type)

(L1: Type)

(L2: Type)

(R2: Type),

(Op (Quad LO L1 L2 R2) LO)
) : Type.

Definition Quad._left0 :=
(funLOLI L2 R2 g = (Pair_left LO (Trip L1 L2 R2) q))
: Quad_left0_Ty.

20.12 Quadruple right 0

(Quad_right0 LO L1 L2 R2 t) is the right of g.
Definition Quad-right0_Ty :=

(Vv

(LO: Type)

(L1: Type)

(L2: Type)

(R2: Type),

(Op (Quad LO L1 L2 R2) (Trip L1 L2 R2))
) : Type.

Definition Quad_right0 :=
(fun LO LI L2 R2 q = (Pair-right LO (Trip L1 L2 R2) q))
: Quad_right0_Ty.

20.13 Quadruple left 1

(Quad_leftl LO L1 L2 R2 t) is the right-left of g.
Definition Quad_leftl1_Ty :=

(Vv

(LO: Type)

(L1: Type)

(L2: Type)

(R2: Type),

(Op (Quad LO L1 L2 R2) L1)
) : Type.

Definition Quad_leftl := (fun LOLI L2R2 q=
(Trip_left0 L1 L2 R2 (Quad_right0 LO L1 L2 R2 g))
) : Quad_leftl_Ty.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 150 of 203

20.14 Quadruple left 2

(Quad_left2 LO L1 L2 R2 t) is the right-right-left of g.
Definition Quad_left2_Ty :=

(v

(LO: Type)

(L1: Type)

(L2: Type)

(R2: Type),

(Op (Quad LO L1 L2 R2) L2)
) : Type.

Definition Quad-_left2:= (fun LOLI L2 R2 g =
(Trip_leftl L1 L2 R2 (Quad-right0 LO L1 L2 R2 q))
) : Quad_left2_Ty.

20.15 Quadruple right 2

(Quad_right2 L0 L1 L2 R2 t) is the right-right-right of g.
Definition Quad-right2_Ty :=

(Vv

(LO: Type)

(L1: Type)

(L2: Type)

(R2: Type),

(Op (Quad LO L1 L2 R2) R2)
) : Type.

Definition Quad_right2:= (fun LOLI1 L2 R2 g =
(Trip-rightl L1 L2 R2 (Quad_-right0 LO L1 L2 R2 q))
) : Quad_right2_Ty.

21 Fundamentals: Lists: Main

Poohbist. NummSquared.Fundamentals.Lists.Main

Poohbist. NummSquared. Fundamentals. Lists.Main defines lists, non-empty lists, and some operators on lists and
non-empty lists.

21.1 Dependencies

Require Import Poohbist. NummSquared. Fundamentals.Operators.Main.
Require Import Poohbist. NummSquared.Fundamentals.Booleans.Main.
Require Import Poohbist. NummSquared. Fundamentals. Naturals.Main.
Require Import Poohbist. NummSquared.Fundamentals.Optionals.Main.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 151 of 203

21.2 Lists
A list Ais exactly one of the following:
e the nil list A

e for some head : A and rest : (Lis A), the cons list A of head and rest

Lisis defined in the same way as list in Cogq.Lists.List, except that Lis: Type whereas list:Set.
Inductive Lis(A: Type) : Type:=

| Lis_nil: (Lis A)

| Lis_cons: (Op_Bin A (Lis A) (Lis A)).

21.3 List notation

A, a0, .., al is the list A containing the elements a0, ..., al. a0, ..., al must contain at least one element.

A, a0, .., alis defined in the same way as the list notation in [8, section 11.1.11], except that A, a0, .., al explic-
itly includes A.
Notation "[A, a0, ..,al]":=
(Lis_.cons A a0.. (Lis_cons A al (Lis_nil A)) ..) : Lis_scope.
Open Scope Lis_scope.

21.4 Listrelated to

(Lis_rel AO Al rel01 10 11) is the true Boolean if 0 and /1 have the same shape, and their corresponding elements a0:
A0, al : Al satisty (rel01 a0 al); and the false Boolean otherwise.
Definition Lis_rel_Ty :=
(Vv
(A0: Type)
(Al: Type)
(rel01 : (Boo_Pred_Bin A0 Al)),
(Boo-Pred_Bin (Lis A0) (Lis Al))
) : Type.
Definition Lis_rel := (fun AO Al rel0] =
fix fp(l0: (Lis A0))(I1: (Lis AD){struct 10} : Boo :=
match 10, 11
return Boo
with
| Lis_nil, Lis_nil = Boo_t
| Lis_cons lOHead IORest, Lis_cons l1Head l1Rest =
if (rel01 l0Head l1Head)

return Boo
then (fp lORest 1 Rest)
else Boo_f

| -, -= Boo-f

end

): Lis_rel_Ty.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 152 of 203

21.5 Listrelated to, connective

(Lis_rel_conn ArelAl011)is (Lis_rel AA relA 10 11).
Definition Lis_rel_conn_Ty :=

(Vv
(A: Type)
(relA: (Boo_Pred_Bin_Conn A)),
(Boo_Pred_Bin_Conn (Lis A))

) : Type.

Definition Lis_rel_conn :=
(funArelAl011 = (Lis_rel AArelAlO 1)) : Lis_rel_conn_Ty.

21.6 Listhead

(Lis_head Al) is the none optional Aif /is the nil list 4; and the one optional A containing /Head if I is the cons list A
of I[Head and [Rest.
Definition Lis_head_Ty :=

(Y(A: Type), (Op (Lis A) (Optional A))) : Type.

Definition Lis_head := (fun Al=
match |
return (Optional A)
with
| Lis_nil = (Optional_none A)
| Lis_cons IHead IRest = (Optional_one A [Head)
end
) : Lis_head_Ty.

21.7 Listrest

(Lis_rest A l) is the none optional list A if [is the nil list A; and the one optional list A containing [Rest if [is the cons
list A of [Head and [Rest.
Definition Lis_rest_Ty :=

(Y(A: Type), (Op (Lis A) (Optional (Lis A)))) : Type.

Definition Lis_rest := (fun Al=
match |
return (Optional (Lis A))
with
| Lis_nil = (Optional_none (Lis A))
| Lis_cons [Head [Rest = (Optional_one (Lis A) [Rest)
end
) : Lis_rest_Ty.

21.8 List non-empty

(Lis-nonEmpty Al) is the false Boolean if /is the nil list A; and the true Boolean otherwise.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 153 of 203

Definition Lis_nonEmpty_Ty :=
(V(A: Type), (Boo-Pred (Lis A))) : Type.

Definition Lis_nonEmpty := (fun Al=
match |
return Boo
with
| Lis_nil = Boo_f
| Lis_cons [Head IRest = Boo-_t
end
) : Lis_nonEmpty_Ty.

21.9 Listempty

(Lis_empty Al) is (Boo_not (Lis_nonEmpty A).
Definition Lis_empty_Ty :=
(Y(A: Type), (Boo-Pred (Lis A))) : Type.

Definition Lis_empty := (fun Al=
(Boo_not (Lis_nonEmpty A l))
) : Lis_empty_Ty.

21.10 List concatenate

(Lis_cat A 10 11) is the list A containing the elements in [0 followed by the elements in /1.
Definition Lis_cat_Ty :=
(V(A: Type), (Op-Bin_Simp (Lis A))) : Type.

Definition Lis_cat := (fun A =
fix fp10: (Lis A) (11 : (Lis A)){struct 10} : (Lis A) :=
match 10
return (Lis A)
with
| Lis_nil = 11
| Lis_cons lOHead IORest = (Lis-cons A lI0Head (fp IORest 11))
end
) : Lis_cat_Ty.

21.11 List append

(Lis_.append Al a) is (Lis_cat AL [A, al).
Definition Lis_append_Ty :=
(V(A: Type), (Op-Bin (Lis A) A (Lis A))) : Type.

Definition Lis_append :=
(funAla= (Lis_.cat Al[A, a])): Lis_append_Ty.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 154 of 203

21.12 The list singleton operator

(Lis-Op_singleton A B opA) is the operator from A to a list Bmapping a: Aonto [B, (opA a)].
Definition Lis_Op-_singleton_Ty :=

(Vv
(A: Type)
(B: Type)
(opA: (OpAB)),
(Op A (Lis B))
) : Type.

Definition Lis_Op-_singleton :=
(fun ABopAa= [B, (opAa)]): Lis_Op-singleton_Ty.

21.13 Thelist singleton binary operator

(Lis_-Op_singleton_bin A0 Al B opA) is the binary operator from A0, Al to a list Bmapping a0: A0, al : Al onto [B,
(opA a0 al)].
Definition Lis_Op-_singleton_bin_Ty :=

(Vv
(A0: Type)
(Al: Type)
(B: Type)
(opA: (Op-Bin A0 Al B)),
(Op-Bin A0 Al (Lis B))
) : Type.

Definition Lis_Op_singleton_bin :=
(fun AOAI BopAaOal = [B, (opAa0al)]): Lis_Op-_singleton_bin_Ty.

21.14 The list prefix operator

(Lis-Op_prefix A B opA prefix) is the operator from A to a list Bmapping a: A onto (Lis_cat B prefix (opA a)).
Definition Lis_Op_prefix_Ty :=

(Vv
(A: Type)
(B: Type)
(opA: (Op A (Lis B)))
(prefix: (Lis B)),
(Op A (Lis B))

) : Type.

Definition Lis-Op_prefix := (fun A B opA prefix a =
(Lis_cat B prefix (opA a))
) : Lis_Op_prefix_Ty.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 155 of 203

21.15 The list suffix operator

(Lis-Op_suffix A B opA suffix) is the operator from A to a list Bmapping a: A onto (Lis_cat B (opA a) suffix).
Definition Lis_Op_suffix_Ty :=

(Vv
(A: Type)
(B: Type)
(opA: (Op A (Lis B)))
(suffix: (Lis B)),
(Op A (Lis B))
) : Type.

Definition Lis- Op_suffix := (fun A B opA suffix a =
(Lis_cat B (opA a) suffix)
) : Lis_Op_suffix_Ty.

21.16 List generate

(Lis_generate A genA m) is the list A whose elements are obtained by conatenating the following lists A: (genA Nat_z),
..., (genA m).
Definition Lis_generate_Ty :=

(Vv
(A: Type)
(genA: (Op Nat (Lis A))),
(Op Nat (Lis A))

) : Type.

Definition Lis_generate := (fun A genA =
fix fp(m: Nat){struct m} : (Lis A) :=
match m
return (Lis A)
with
| Nat_z = (genA Nat_z)
| Nat_s mPre = (Lis_cat A (fp mPre) (genA m))
end
) : Lis_generate_Ty.

21.17 List generate, to element

(Lis_generate_toElem A genA m) is (Lis_generate A (Lis_Op_singleton Nat A genA) m).
Definition Lis_generate_toElem_Ty :=

(Vv
(A: Type)
(genA: (Op Nat A)),
(Op Nat (Lis A))

) : Type.

Definition Lis_generate_toElem := (fun A genA m =

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally

October 18, 2006 / 156 of 203

(Lis_generate A (Lis_ Op_singleton Nat A genA) m)
) : Lis_generate_toElem_Ty.

21.18 Non-empty lists

A non-empty list Anamed ! contains all of the following:
e the head of /, which is an A
¢ the rest of /, which is a list A

Record Lis_Ne(A: Type) : Type := Lis_Ne_ctor {
Lis_Ne_head : A;
Lis_Ne_rest : (Lis A)

21.19 Non-empty list related to

(List_Ne_rel A0 Al rel01 10 11) is the true Boolean if (rel01 (Lis_Ne_head A0 10) (Lis_Ne_head Al l1)) and (Lis_rel A0 Al

rel01 (Lis_Ne_rest A0 10) (Lis_Ne_rest Al 11)); and the false Boolean otherwise.

Definition Lis_Ne_rel_Ty :=

(Vv
(A0: Type)
(Al: Type)
(rel01 : (Boo_Pred_Bin A0 Al)),
(Boo_Pred_Bin (Lis_Ne A0) (Lis_Ne Al))
) : Type.

Definition Lis_Ne_rel := (fun A0 Al rel01 10 11 =
if (rel01 (Lis-Ne_head A0 10) (Lis-Ne_head Al 11))
return Boo
then

(Lis_rel A0 Al rel01 (Lis_Ne_rest A0 10) (Lis_Ne_rest Al [1))

else Boo_f
): Lis_Ne_rel_Ty.

21.20 Non-empty list related to, connective

(List_Ne_rel_conn ArelAl0 1) is (Lis_Ne_rel AArelA 10 l1).
Definition Lis_Ne_rel_conn_Ty :=

(Vv
(A: Type)
(relA: (Boo_Pred_Bin_Conn A)),
(Boo_Pred_Bin_Conn (Lis_Ne A))
) : Type.

Definition Lis_Ne_rel_conn :=
(funArelAl0 11 = (Lis_Ne_rel AArelAl011))
: Lis_Ne_rel_conn_Ty.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 157 of 203

21.21 Non-empty list singleton

(List_Ne_singleton A a) is the non-empty list A containing just a.
Definition Lis_Ne_singleton_Ty :=
(V(A: Type), (Op A (Lis_-Ne A))) : Type.

Definition Lis_Ne_singleton := (fun A a =
(Lis_Ne_ctor A a (Lis_nil A))
) : Lis_Ne_singleton_Ty.

21.22 Non-empty list to list

(List_Ne_to_Lis Al) is the list A containing the same elements as L
Definition Lis_Ne_to_Lis_Ty :=
(V(A: Type), (Op (Lis-Ne A) (Lis A))) : Type.

Definition Lis_Ne_to_Lis:= (funAl=
(Lis_cons A (Lis_Ne_head A l) (Lis_Ne_rest A l))
) : Lis_Ne_to_Lis_Ty.

21.23 The non-empty list head operator

(Lis-Ne_Op_head A B opA) is the operator from a non-empty list A to Bmapping /: (Lis-Ne A) onto (opA
(Lis_Ne_head A l)).
Definition Lis_Ne_Op_head_Ty :=

(V
(A: Type)
(B: Type)
(opA: (OpAB),
(Op (Lis-Ne A) B)
) : Type.

Definition Lis_Ne_Op_head :=
(fun ABopAl= (opA (Lis-Ne_head A 1))) : Lis_Ne_Op_head_Ty.

21.24 List to non-empty list

(Lis_to_Lis_Ne A l) is the none optional non-empty list A if / is the nil list A; and the one optional non-empty list A
containing the non-empty list A with the same elements as [otherwise.
Definition Lis_to_Lis_Ne_Ty :=

(V(A: Type), (Op (Lis A) (Optional (Lis_Ne A)))) : Type.

Definition Lis_to_Lis-Ne:= (fun Al=
match l
return (Optional (Lis-Ne A))
with
| Lis_nil = (Optional_none (Lis_Ne A))
| Lis_cons [Head [Rest =

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 158 of 203

(Optional_one (Lis_-Ne A) (Lis_Ne_ctor A IHead [Rest))
end
) : Lis_to_Lis_Ne_Ty.

21.25 2 pluslists

A 2 plus list Anamed [contains all of the following:

¢ the head of /, which isan A

e therest of /, which is a non-empty list A

Record Lis_P2(A: Type) : Type := Lis_P2_ctor {
Lis_P2_head : A;
Lis_P2_rest : (Lis_-Ne A)

22 Fundamentals: Optionals: And Lists

Poohbist. NummSquared.Fundamentals.Optionals.AndLists

Poohbist. NummSquared. Fundamentals.Optionals.AndLists defines some operators relating optionals and lists.

22.1 Dependencies

Require Import Poohbist. NummSquared. Fundamentals.Operators.Main.
Require Import Poohbist. NummSquared.Fundamentals.Optionals.Main.
Require Import Poohbist. NummSquared.Fundamentals.Lists.Main.

22.2 Optional to list

(Optional_to_Lis A 0) is the nil list Aif ois the none optional 4; and [A, 4] if 0is the one optional A containing a.
Definition Optional_to_Lis_Ty :=
(Y(A: Type), (Op (Optional A) (Lis A))) : Type.

Definition Optional_to_Lis:= (fun Ao =
match o
return (Lis A)
with
| Optional_none = (Lis_nil A)
| Optional_one a = [A, a]
end
) : Optional_to_Lis_Ty.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 159 of 203

23 Fundamentals: Booleans: And Lists

Poohbist. NummSquared.Fundamentals. Booleans.AndLists

Poohbist. NummSquared. Fundamentals.Booleans.AndLists defines some operators relating Booleans and lists.

23.1 Dependencies

Require Import Poohbist. NummSquared.Fundamentals.Operators.Main.
Require Import Poohbist. NummSquared. Fundamentals.Booleans.Main.

Require Import Poohbist. NummSquared. Fundamentals.Booleans.AndOptionals.
Require Import Poohbist. NummSquared.Fundamentals.Lists.Main.

Require Import Poohbist. NummSquared.Fundamentals.Optionals.AndLists.

23.2 Boolean to list

(Boo_to_Lis A b a) is (Optional_to_Lis A (Boo_to_Optional A b a)).
Definition Boo_to_Lis_Ty :=
(Vv
(A: Type),
(Op-Bin Boo A (Lis A))
) : Type.
Definition Boo_to_Lis:= (funAba=
(Optional_to_Lis A (Boo_to_Optional A b a))
) : Boo_to_Lis_Ty.

23.3 The Boolean list operator

(Boo_Op_Lis A predA) is the operator from A to an list A mapping a: A onto (Boo-to_Lis A (predA a) a).
Definition Boo_Op_Lis_Ty :=

(v
(A: Type)
(predA: (Boo-Pred A)),
(Op A (Lis A))

) : Type.

Definition Boo_Op_Lis :=
(fun A predA a= (Boo_to_Lis A (predA a) a)) : Boo_Op_Lis_Ty.

24 Fundamentals: Naturals: And Lists

Poohbist. NummSquared. Fundamentals.Naturals.AndLists

Poohbist. NummSquared. Fundamentals. Naturals.AndLists defines natural number lists, and some operators on
natural number lists.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 160 of 203

24.1 Dependencies

Require Import Poohbist. NummSquared.Fundamentals.Booleans.Main.
Require Import Poohbist. NummSquared. Fundamentals. Naturals.Main.
Require Import Poohbist. NummSquared.Fundamentals.Lists.Main.

24.2 Natural number lists

A natural number list is a list of natural numbers.
Definition Nat_Lis := (Lis Nat) : Type.

24.3 Natural number list equals

(Nat_Lis_eq 10 1) is the true Boolean if /0 and /I are structurally equal; and the false Boolean otherwise.
Definition Nat_Lis_eq:= (fun 1011 >
(Lis_rel_conn Nat Nat_eq 10 11)
) : (Boo_Pred_Bin_Conn Nat_Lis).

25 Fundamentals: Naturals: Efficient: And Lists

Poohbist. NummSquared. Fundamentals. Naturals.Efficient. AndLists

Poohbist. NummSquared. Fundamentals. Naturals. Efficient.AndLists defines efficient natural number lists, and
some operators on efficient natural number lists.

25.1 Dependencies

Require Import Poohbist. NummSquared.Fundamentals.Booleans.Main.
Require Import Poohbist. NummSquared.Fundamentals.Naturals.Efficient. Main.
Require Import Poohbist. NummSquared.Fundamentals.Lists.Main.

25.2 Efficient natural number lists

An efficient natural number list is a list of efficient natural numbers.
Definition Nat_Eff-Lis := (Lis Nat_Eff) : Type.

25.3 Efficient natural number list equals

(Nat_Eff-Lis_eq 10 11) is the true Boolean if /0 and /1 are structurally equal (except using Nat_Eff-eq); and the false
Boolean otherwise.
Definition Nat_Eff_Lis_eq:= (fun 1011 =
(Lis_rel_conn Nat_Eff Nat_Eff-eq 10 11)
) : (Boo_Pred_Bin_Conn Nat_Eff_Lis).

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 161 of 203

26 Fundamentals: Pairs: And Lists

Poohbist. NummSquared.Fundamentals.Pairs.AndLists

Poohbist. NummSquared. Fundamentals. Pairs.AndLists defines some operators relating pairs and lists.

26.1 Dependencies

Require Import Poohbist. NummSquared.Fundamentals.Operators.Main.
Require Import Poohbist. NummSquared. Fundamentals. Pairs.Main.
Require Import Poohbist. NummSquared.Fundamentals.Lists.Main.

26.2 Pair of head and rest to non-empty list

(Pair_headRest_to_Lis_Ne A p) is (Lis_Ne_ctor A (Pair_left A (Lis A) p) (Pair_right A (Lis A) p)).
Definition Pair_headRest_to_Lis_Ne_Ty :=

(V (A: Type), (Op (Pair A (Lis A)) (Lis-Ne A)))

: Type.
Definition Pair_headRest-to_Lis_-Ne:= (fun A p >

(Lis-Ne_ctor A (Pair_left A (Lis A) p) (Pair_right A (Lis A) p))

) : Pair_headRest_to_Lis_Ne_Ty.

27 Fundamentals: Lists: Select

Poohbist. NummSquared. Fundamentals.Lists.Select

Poohbist. NummSquared.Fundamentals.Lists.Select defines some selection operators on lists.

27.1 Dependencies

Require Import Poohbist. NummSquared.Fundamentals.Operators.Main.
Require Import Poohbist. NummSquared.Fundamentals.Booleans.Main.
Require Import Poohbist. NummSquared. Fundamentals. Naturals.Main.
Require Import Poohbist. NummSquared.Fundamentals.Optionals.Main.
Require Import Poohbist. NummSquared.Fundamentals.Lists.Main.
Require Import Poohbist. NummSquared.Fundamentals.Booleans.AndLists.

27.2 Listselect

(Lis_select A B selectSuffix 1) is the list B obtained by first applying selectSuffix to each non-empty suffix of / (starting
with [itself, if /is non-empty) made into a non-empty list A; and then concatenating the resulting lists B. If /is the nil
list A, then (Lis_select A B selectSuffix I) is the nil list B.

Lis_select is somewhat similar in concept to the LISP mapcon function (see [27, chapter 12]).
Definition Lis_select_Ty :=
(Vv

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally

October 18, 2006 / 162 of 203

(A: Type)
(B: Type)
(selectSuffix : (Op (Lis_-Ne A) (Lis B))),
(Op (Lis A) (Lis B))
) : Type.

Definition Lis_select := (fun A B selectSuffix =
fix fp(l: (Lis A)){struct I} : (Lis B) :=
match |
return (Lis B)
with
| Lis_nil = (Lis_nil B)
| Lis_cons [Head [Rest =

(Lis_cat
B
(selectSuffix (Lis-Ne_ctor A I[Head [Rest))
(fp [Rest)

)

end
) : Lis_select_Ty.

27.3 Listselect, simple

(Lis_select_simp A selectSuffix I) is (Lis_select A A selectSuffix I).
Definition Lis_select_simp_Ty :=
(Vv
(A: Type)
(selectSuffix : (Op (Lis_-Ne A) (Lis A))),
(Op-Simp (Lis A))
) : Type.
Definition Lis_select_simp := (fun A selectSuffix 1 =
(Lis_select A A selectSuffix I)
) : Lis_select_simp_Ty.

27.4 Listselect, iterate

(Lis_select_iter A selectSuffix | m) is (Nat_iter (Lis A) (Lis_select_simp A selectSuffix) I m).
Definition Lis_select_iter_Ty :=
(Vv
(A: Type)
(selectSuffix : (Op (Lis_-Ne A) (Lis A))),
(Op-Bin (Lis A) Nat (Lis A))
) : Type.
Definition Lis_select_iter := (fun A selectSuffix | m =
(Nat_iter (Lis A) (Lis_select_simp A selectSuffix) Il m)
) : Lis_select_iter_Ty.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 163 of 203

27.5 Listselect, to element

(Lis_select_toElem A B selectSuffix) is (Lis_select A B (Lis- Op-singleton (Lis-Ne A) B selectSuffix)).

Lis_select_toElem is somewhat similar in concept to the LISP maplist function (see [27, chapter 12]).
Definition Lis_select_toElem_Ty :=

(Vv
(A: Type)
(B: Type)
(selectSuffix : (Op (Lis_-Ne A) B)),
(Op (Lis A) (Lis B))
) : Type.

Definition Lis_select_toElem := (fun A B selectSuffix | =
(Lis_select A B (Lis_Op-singleton (Lis-Ne A) B selectSuffix) I)
) : Lis_select_toElem_Ty.

27.6 Listselect, to element, simple

(Lis_select_toElem_simp A selectSuffix I) is (Lis_select_toElem A A selectSuffix I).
Definition Lis_select_toElem_simp_Ty :=

(Vv
(A: Type)
(selectSuffix : (Op (Lis_-Ne A) A)),
(Op-Simp (Lis A))

) : Type.

Definition Lis_select_toElem_simp := (fun A selectSuffix | =
(Lis_select_toElem A A selectSuffix I)
) : Lis_select_toElem_simp_Ty.

27.7 Listselect, to element, iterate

(Lis_select_toElem_iter A selectSuffix | m) is (Nat_iter (Lis A) (Lis_select_toElem_simp A selectSuffix) | m).
Definition Lis_select_toElem_iter_Ty :=

(v
(A: Type)
(selectSuffix : (Op (Lis-Ne A) A)),
(Op-Bin (Lis A) Nat (Lis A))

) : Type.

Definition Lis_select_toElem_iter := (fun A selectSuffix I m =
(Nat_iter (Lis A) (Lis_select_toElem_simp A selectSuffix) | m)
) : Lis_select_toElem_iter_Ty.

27.8 Listselect, by element
(Lis_select_byElem A B selectA I) is (Lis_select A B (Lis-Ne_Op_head A (Lis B) selectA) I).

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 164 of 203

(Lis_select_byElem A B selectA I) is the list B obtained by first applying selectA to each element in [(in the or-
der in which the elements appear in /); and then concatenating the resulting lists B. If [is the nil list A, then
(Lis_select_byElem A B selectA I) is the nil list B.

Lis_select_byElem is somewhat similar in concept to the LISP mapcan function (see [27, chapter 12]).
Definition Lis_select_byElem_Ty :=

(Vv
(A: Type)
(B: Type)
(selectA: (Op A (Lis B))),
(Op (Lis A) (Lis B))

) Type.

Definition Lis_select_byElem := (fun A B selectA | =
(Lis_select A B (Lis-Ne_Op-head A (Lis B) selectA) 1)
) : Lis_select_byElem_Ty.

27.9 Listselect, by element, simple

(Lis_select_byElem_simp A selectA) is (Lis_select_byElem A A selectA).
Definition Lis_select_byElem_simp_Ty :=

(Vv
(A: Type)
(selectA: (Op A (Lis A))),
(Op-Simp (Lis A))

) : Type.

Definition Lis_select_byElem_simp := (fun A selectA | =
(Lis_select_byElem A A selectA])
) : Lis_select_byElem_simp_Ty.

27.10 Listselect, by element, iterate

(Lis_select_byElem_iter A selectA | m) is (Nat_iter (Lis A) (Lis_select_byElem_simp A selectA) | m).
Definition Lis_select_byElem_iter_Ty :=

(V
(A: Type)
(selectA: (Op A (Lis A))),
(Op-Bin (Lis A) Nat (Lis A))
) : Type.

Definition Lis_select_byElem_iter := (fun A selectA l m =
(Nat_iter (Lis A) (Lis_select_byElem_simp A selectA) | m)
) : Lis_select_byElem_iter_Ty.

27.11 Listselect, by element, introduced

(Lis_select_byElem_intro A B selectA intro 1) is (Lis_select_byElem A B (Lis_ Op-prefix A B selectA intro) I).

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 165 of 203

Definition Lis_select_byElem_intro_Ty :=

(Vv
(A: Type)
(B: Type)
(selectA: (Op A (Lis B)))
(intro: (Lis B)),
(Op (Lis A) (Lis B))
) : Type.

Definition Lis_select_byElem_intro := (fun A B selectA intro | =
(Lis_select_byElem A B (Lis_Op_prefix A B selectA intro) I)
) : Lis_select_byElem_intro_Ty.

27.12 Listselect, by element, terminated

(Lis_select_byElem_ter A B selectA ter) is (Lis_select_byElem A B (Lis_Op_suffix A B selectA ter) I).
Definition Lis_select_byElem_ter_Ty :=

(Vv
(A: Type)
(B: Type)
(selectA: (Op A (Lis B)))
(ter: (Lis B)),
(Op (Lis A) (Lis B))
) : Type.

Definition Lis_select_byElem_ter := (fun A B selectA ter | >
(Lis_select_byElem A B (Lis_ Op_suffix A B selectA ter))
) : Lis_select_byElem_ter_Ty.

27.13 List select, by element, separated

(Lis_select_byElem_sep A B selectA sep I) is the nil list Bif [is the nil list A; and the list B obtained by concatenating
(selectA [Head) and (Lis_select_byElem_intro A B selectA sep IRest) if lis the cons list A of [Head and [Rest.
Definition Lis_select_byElem_sep_Ty :=
(Vv
(A: Type)
(B: Type)
(selectA: (Op A (Lis B)))
(sep: (Lis B)),
(Op (Lis A) (Lis B))
) : Type.

Definition Lis_select_byElem_sep := (fun A B selectA sep | =
match |
return (Lis B)
with
| Lis_nil = (Lis_nil B)
| Lis_cons [Head [Rest =

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 166 of 203

(Lis_cat

B

(selectA IHead)

(Lis_select_byElem_intro A B selectA sep [Rest)
)

end
) : Lis_select_byElem_sep_Ty.

27.14 Listselect, by element, to element

(Lis_select_byElem_toElem A B selectA I) is (Lis_select_byElem A B (Lis_ Op_singleton A B selectA)).

Lis_select_byElem_toElem is somewhat similar in concept to the LISP mapcar function (see [27, chapter 12]).
Definition Lis_select_byElem_toElem_Ty :=
(Vv
(A: Type)
(B: Type)
(selectA: (Op A B)),
(Op (Lis A) (Lis B))
) : Type.
Definition Lis_select_byElem_toElem := (fun A B selectA | =
(Lis_select_byElem A B (Lis_Op-singleton A B selectA) I)
) : Lis_select_byElem_toElem_Ty.

27.15 Listselect, by element, to element, simple

(Lis_select_byElem_toElem_simp A selectA I) is (Lis_select_byElem_toElem A A selectA l).
Definition Lis_select_byElem_toElem_simp_Ty =
(V(A: Type)(selectA: (Op-Simp A)), (Op-Simp (Lis A))
) : Type.
Definition Lis_select_byElem_toElem_simp := (fun A selectA | =
(Lis_select_byElem_toElem A A selectA])
) : Lis_select_byElem_toElem_simp_Ty.

27.16 Listselect, by element, to element, iterate

(Lis_select_byElem_toElem_iter A selectA | m) is (Nat_iter (Lis A) (Lis_select_byElem_toElem_simp A selectA) I m).
Definition Lis_select_byElem_toElem_iter_Ty :=

(v
(A: Type)
(selectA: (Op-Simp A)),
(Op-Bin (Lis A) Nat (Lis A))
) : Type.

Definition Lis_select_byElem_toElem_iter := (fun A selectAl m =
(Nat_iter (Lis A) (Lis_select_byElem_toElem_simp A selectA) | m)

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 167 of 203

) : Lis_select_byElem_toElem_iter_Ty.

27.17 List select, by prefix, recursive

(Lis_select_byPrefix_recur A B selectPrefix | earlier) is the list B obtained by first applying selectPrefix to each non-
empty prefix of / (ending with /itself, if /is non-empty), prefixed with earlier, and with the tail separated; and then
concatenating the resulting lists B. If [is the nil list A, then (Lis_select_byPrefix_recur A B selectPrefix [earlier) is the
nil list B.

Definition Lis_select_byPrefix_recur_Ty :=

(v
(A: Type)
(B: Type)
(selectPrefix : (Op_Bin (Lis A) A (Lis B))),
(Op-Bin_Conn (Lis A) (Lis B))
) : Type.

Definition Lis_select_byPrefix_recur := (fun A B selectPrefix =
fix fp(l: (Lis A))(earlier : (Lis A)){struct I} : (Lis B) :=
match l
return (Lis B)
with
| Lis-nil = (Lis-nil B)
| Lis_cons [Head [Rest =

(Lis_cat

B

(selectPrefix earlier IHead)

(fp [Rest (Lis_append A earlier [Head))
)

end
) : Lis_select_byPrefix_recur_Ty.

27.18 List select, by prefix

(Lis_select_byPrefix A B selectPrefix I) is the list B obtained by first applying selectPrefix to each non-empty prefix of [
(ending with [itself, if /is non-empty) with the tail separated; and then concatenating the resulting lists B. If /is the
nil list A, then (Lis_select_byPrefix A B selectPrefix) is the nil list B.
Definition Lis_select_byPrefix_Ty :=
(Vv
(A: Type)
(B: Type)
(selectPrefix : (Op-Bin (Lis A) A (Lis B))),
(Op (Lis A) (Lis B))
) : Type.

Definition Lis_select_byPrefix := (fun A B selectPrefix | =
(Lis_select_byPrefix_recur A B selectPrefix | (Lis_nil A))
) : Lis_select_byPrefix_Ty.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 168 of 203

27.19 Listselect, by prefix, simple

(Lis_select_byPrefix_simp A selectPrefix I) is (Lis_select_byPrefix A A selectPrefix I).
Definition Lis_select_byPrefix_simp_Ty :=

(Vv
(A: Type)
(selectPrefix : (Op-Bin (Lis A) A (Lis A))),
(Op-Simp (Lis A))

) : Type.

Definition Lis_select_byPrefix_simp := (fun A selectPrefix | >
(Lis_select_byPrefix A A selectPrefix I)
) : Lis_select_byPrefix_simp_Ty.

27.20 Listselect, by prefix, iterate

(Lis_select_byPrefix_iter A selectPrefix | m) is (Nat_iter (Lis A) (Lis_select_byPrefix_simp A selectPrefix) l m).
Definition Lis_select_byPrefix_iter_Ty :=

(Vv
(A: Type)
(selectPrefix : (Op_Bin (Lis A) A (Lis A))),
(Op-Bin (Lis A) Nat (Lis A))

) : Type.

Definition Lis_select_byPrefix_iter := (fun A selectPrefix | m =
(Nat_iter (Lis A) (Lis_select_byPrefix_simp A selectPrefix) | m)
) : Lis_select_byPrefix_iter_Ty.

27.21 Listselect, by prefix, to element

(Lis_select_byPrefix_toElem A B selectPrefix I) is (Lis_select_byPrefix A B (Lis-Op_singleton_bin (Lis A) A B selectPrefix) |
).
Definition Lis_select_byPrefix_toElem_Ty :=
(Vv
(A: Type)
(B: Type)
(selectPrefix : (Op-Bin (Lis A) A B)),
(Op (Lis A) (Lis B))
) : Type.

Definition Lis_select_byPrefix_toElem := (fun A B selectPrefix | =
(Lis_select_byPrefix
A
B
(Lis_-Op_singleton_bin (Lis A) A B selectPrefix)
l
)
) : Lis_select_byPrefix_toElem_Ty.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 169 of 203

27.22 List select, by prefix, to element, simple

(Lis_select_byPrefix_toElem_simp A selectPrefix I) is (Lis_select_byPrefix_toElem A A selectPrefix I).
Definition Lis_select_byPrefix_toElem_simp_Ty =

(Vv
(A: Type)
(selectPrefix : (Op-Bin (Lis A) A A)),
(Op-Simp (Lis A))

) : Type.

Definition Lis_select_byPrefix_toElem_simp := (fun A selectPrefix | =
(Lis_select_byPrefix_toElem A A selectPrefix I)
) : Lis_select_byPrefix_toElem_simp_Ty.

27.23 List select, by prefix, to element, iterate

(Lis_select_byPrefix_toElem_iter A selectPrefix m) is (Nat_iter (Lis A) (Lis_select_byPrefix_toElem_simp A selectPrefix)
Im).
Definition Lis_select_byPrefix_toElem_iter_Ty :=
(v
(A: Type)
(selectPrefix : (Op_Bin (Lis A) A A)),
(Op-Bin (Lis A) Nat (Lis A))
) : Type.
Definition Lis_select_byPrefix_toElem_iter := (fun A selectPrefix | m =
(Nat_iter
(Lis A)
(Lis_select_byPrefix_toElem_simp A selectPrefix)
l
m

)
) : Lis_select_byPrefix_toElem_iter_Ty.

27.24 Listsearch

(Lis_search A matA) is (Lis_select_byElem_simp A (Boo_-Op-Lis A matA) I).

(Lis_search A matAl) is [, less those a : Athat do not satisfy (matA a).
Definition Lis_search_Ty :=
(Vv
(A: Type)
(matA: (Boo_Pred A)),
(Op-Simp (Lis A))
) : Type.
Definition Lis_search := (fun A matAl=
(Lis_select_byElem_simp A (Boo-Op_Lis A matA) I)
) : Lis_search_Ty.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally

October 18, 2006 / 170 of 203

27.25 List search, first

(Lis_search_first A matA) is (Lis-head A (Lis_search A matA).

Definition Lis_search_first_Ty :=

(v
(A: Type)
(matA: (Boo_Pred A)),
(Op (Lis A) (Optional A))
) : Type.

Definition Lis_search_first := (fun A matA |l =
(Lis_head A (Lis_search A matAl))
) : Lis_search_first_Ty.

27.26 Listsearch, is found

(Lis_search_isFound A matAl) is (Lis_nonEmpty A (Lis_search A matA).

(Lis_search_isFound A matA l) is the true Boolean if there is some a: Ain [such that (matA a); and the false

Boolean otherwise.
Definition Lis_search_isFound_Ty :=

(Vv
(A: Type)
(matA: (Boo_Pred A)),
(Boo_Pred (Lis A))

) : Type.

Definition Lis_search_isFound := (fun A matA | =
(Lis-.nonEmpty A (Lis_search A matA l))
) : Lis_search_isFound_Ty.

27.27 Listintersection, match

(Lis_intersect_mat A0 Al rel01 11) is the Boolean predicate on A0 mapping a0: A0 onto (Lis_search_isFound Al (rel01

a0) 11).

(Lis_intersect_mat A0 Al rel01 l1) is the Boolean predicate on A0 mapping a0: A0 onto the true Boolean if there is

some al : Al in l1 such that (rel0I a0 al); and the false Boolean otherwise.

Definition Lis_intersect_mat_Ty :=

(Vv
(A0: Type)
(Al: Type)
(rel01 : (Boo_-Pred_Bin A0 Al))
(I1:(LisAD),
(Boo-Pred A0)

) : Type.

Definition Lis_intersect_mat := (fun A0 Al rel01 l1 a0 =
(Lis_search_isFound Al (rel01 a0) 11)

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 171 of 203

) : Lis_intersect_-mat_Ty.

27.28 List intersection
(Lis_intersect A0 Al rel01 10 11) is (Lis_search A0 (Lis_intersect-mat A0 Al rel01 11) 10).

(Lis_intersect A0 Al rel01 10 11) is 10, less those a0 : A0 for which there isno al : Al in lI such that (rel0I a0 al).
Definition Lis_intersect_Ty :=

(v
(A0: Type)
(Al: Type)
(rel01 : (Boo_Pred_Bin A0 Al)),
(Op-Bin (Lis A0) (Lis Al) (Lis A0))

) : Type.

Definition Lis_intersect := (fun A0 Al rel01 10 11 =
(Lis_search A0 (Lis_intersect_mat A0 Al rel01 11) 10)
) : Lis_intersect_Ty.

27.29 Listintersection, connective

(Lis_intersect_conn A relA 10 11) is (Lis_intersect A A relA 10 l1).
Definition Lis_intersect_conn_Ty :=

(Vv
(A: Type)
(relA: (Boo_Pred_Bin_Conn A)),
(Op-Bin_Simp (Lis A))

) : Type.

Definition Lis_intersect_conn := (fun ArelA10 11 =
(Lis_intersect AArelA 10 11)
) : Lis_intersect_conn_Ty.

27.30 Listintersection, first

(Lis-intersect_first A0 Al rel01 10 1) is (Lis-head A0 (Lis-intersect A0 Al rel01 10 11)).
Definition Lis_intersect_first_Ty :=
(Vv
(AO0: Type)
(Al: Type)
(rel01: (Boo_Pred_Bin A0 Al)),
(Op-Bin (Lis A0) (Lis A1) (Optional A0))
) : Type.
Definition Lis_intersect_first := (fun A0 Al rel01 10 11 =

(Lis_head A0 (Lis_intersect A0 Al rel01 10 1))
) : Lis_intersect_first_Ty.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 172 of 203

27.31 Listintersection, first, connective

(Lis_intersect_first_conn A relA 10 11) is (Lis_intersect_first AA relA 10 L1).
Definition Lis_intersect_first_conn_Ty :=

(Vv
(A: Type)
(relA: (Boo-Pred-Bin_Conn A)),
(Op-Bin_Conn (Lis A) (Optional A))
) : Type.

Definition Lis_intersect_first_conn:= (fun ArelA 10 11 =
(Lis_intersect_first AArelA 10 11)
) : Lis_intersect_first_conn_Ty.

27.32 Listintersection, non-empty

(Lis_intersect_nonEmpty A0 Al rel01 10 11) is (Lis_nonEmpty A0 (Lis_intersect A0 Al rel01 10 11)).
Definition Lis_intersect_nonEmpty_Ty :=

(Vv
(A0: Type)
(Al: Type)
(rel0l1 : (Boo_Pred_Bin A0 Al)),
(Boo_Pred_Bin (Lis AO) (Lis Al))
) : Type.

Definition Lis_intersect_nonEmpty := (fun A0 Al rel01 10 11 >
(Lis-nonEmpty A0 (Lis_intersect A0 Al rel01 10 11))
) : Lis_intersect_nonEmpty_Ty.

27.33 Listintersection, non-empty, connective

(Lis_intersect_nonEmpty_conn A relA 10 11) is (Lis_intersect_nonEmpty A A relA 10 11).
Definition Lis_intersect_nonEmpty_conn_Ty :=

(Vv
(A: Type)
(relA: (Boo_Pred_Bin_Conn A)),
(Boo_Pred_Bin_Conn (Lis A))

) : Type.

Definition Lis_intersect_nonEmpty-conn:= (fun ArelA 10 11 =
(Lis_intersect_nonEmpty A A relA 10 11)
) : Lis_intersect_nonEmpty_conn_Ty.

27.34 List to Boolean predicate

(Lis_to-Boo_Pred A]) is the Boolean predicate on (Boo-Pred A) mapping matA : (Boo-Pred A) onto
(Lis_search_isFound A matA).
Definition Lis_to_Boo_Pred_Ty :=

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 173 of 203

(Vv
(A: Type),
(Op (Lis A) (Boo_Pred (Boo-Pred A)))
) : Type.
Definition Lis_to_Boo_Pred :=
(fun Al matA = (Lis_search_isFound A matAl)) : Lis_to_Boo_Pred_Ty.

28 Fundamentals: Optionals: And Lists Select

Poohbist. NummSquared. Fundamentals.Optionals.AndListsSelect

Poohbist. NummSquared.Fundamentals.Optionals.AndListsSelect defines some operators relating optionals and
list selection operators.

28.1 Dependencies

Require Import Poohbist. NummSquared.Fundamentals.Operators.Main.
Require Import Poohbist. NummSquared. Fundamentals.Optionals.Main.
Require Import Poohbist. NummSquared.Fundamentals.Lists.Main.

Require Import Poohbist. NummSquared.Fundamentals.Optionals.AndlLists.
Require Import Poohbist. NummSquared.Fundamentals.Lists.Select.

28.2 Optional flatten list

(Optional_flattenLis A l) is (Lis_select_byElem (Optional A) A (Optional_to_Lis A)).
Definition Optional_flattenLis_Ty :=
(v
(A: Type),
(Op (Lis (Optional A)) (Lis A))
) : Type.
Definition Optional_flattenLis:= (fun Al =
(Lis_select_byElem (Optional A) A (Optional_to_Lis A))
) : Optional_flattenLis_Ty.

29 Fundamentals: Listfunctions: Main

Poohbist. NummSquared. Fundamentals.Listfunctions.Main

Poohbist. NummSquared. Fundamentals. Listfunctions.Main defines listfunctions, simple listfunctions, and some
operators on listfunctions and simple listfunctions.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally

October 18, 2006 / 174 of 203

29.1 Dependencies

Require Import Poohbist. NummSquared.Fundamentals.Operators.Main.
Require Import Poohbist. NummSquared. Fundamentals.Booleans.Main.
Require Import Poohbist. NummSquared.Fundamentals. Naturals.Main.
Require Import Poohbist. NummSquared.Fundamentals.Lists.Main.
Require Import Poohbist. NummSquared.Fundamentals.Lists.Select.

29.2 Listfunctions

A listfunction from A to Bis an operator from A to a list B.
Definition Lisfunction_Ty := (V(A: Type)(B: Type), Type) : Type.

Definition Lisfunction := (fun A B= (Op A (Lis B))) : Lisfunction_Ty.

29.3 Listfunction to Boolean predicate

(Lisfunction_to_Boo_Pred A B If a) is (Lis_to_Boo_Pred B (If a)).
Definition Lisfunction_to_Boo_Pred_Ty :=

(Vv

(A: Type)

(B: Type),

(Op_Bin (Lisfunction A B) A (Boo-Pred (Boo-Pred B)))
) : Type.

Definition Lisfunction_to_Boo_Pred :=
(fun ABIf a= (Lis_to_Boo_Pred B (If a)))
: Lisfunction_to_Boo_Pred_Ty.

29.4 Simple listfunctions

A simple listfunction on A is a listfunction from A to A.
Definition Lisfunction_Simp_Ty := (V¥ (A: Type), Type) : Type.
Definition Lisfunction_Simp :=

(fun A= (Lisfunction A A)) : Lisfunction_Simp_Ty.

29.5 Simple listfunction to Boolean predicate

(Lisfunction_Simp_to_Boo_Pred A If a) is (Lisfunction_to_Boo_Pred AAIf a).
Definition Lisfunction_Simp_to-Boo_Pred_Ty :=
(Vv
(A: Type),
(Op-Bin (Lisfunction_Simp A) A (Boo_Pred (Boo_Pred A)))
) : Type.
Definition Lisfunction_Simp_to_Boo_Pred :=
(fun Alf a= (Lisfunction_-to-Boo_Pred AAIf a))
: Lisfunction_Simp_to_Boo_Pred_Ty.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 175 of 203

29.6 Simple listfunction iterate

(Lisfunction_Simp_iter A lf m) is the simple listfunction on A mapping a: A onto (Lis_select_byElem_iter A lf [A, al
m).
Definition Lisfunction_Simp_iter_Ty :=
(Vv
(A: Type),
(Op_Bin (Lisfunction_Simp A) Nat (Lisfunction_Simp A))
) : Type.
Definition Lisfunction_Simp_iter .= (fun Alf ma=

(Lis_select_byElem_iter AIf A, a] m)
) : Lisfunction_Simp_iter_Ty.

29.7 Simple listfunction iterate, curry 2

(Lisfunction_Simp_iter_c2 A If a m) is (Lisfunction_Simp_iter AIlf m a).
Definition Lisfunction_Simp_iter-c2_Ty :=
(Vv
(A: Type),
(Op_Tri (Lisfunction_Simp A) A Nat (Lis A))
) : Type.
Definition Lisfunction_Simp_iter_c2 :=

(fun Alf am= (Lisfunction_Simp_iter Alf ma))
: Lisfunction_Simp_iter_c2_Ty.

29.8 Simple listfunction iterate, camulative

(Lisfunction_Simp_iter_cum A If m) is the simple listfunction on A mapping a: A onto (Lis_generate A (Lisfunc-
tion_Simp_iter_-c2 A If a) m).
Definition Lisfunction_Simp_iter_cum_Ty :=
(Vv
(A: Type),
(Op-Bin (Lisfunction_Simp A) Nat (Lisfunction_Simp A))
) : Type.

Definition Lisfunction_Simp_iter_cum:= (fun Alf ma=
(Lis_generate A (Lisfunction_Simp_iter_c2 A If a) m)
) : Lisfunction_Simp_iter_cum_Ty.

30 NummSquared: Syntax: Abstract: Main

Poohbist. NummSquared. NummSquared.Syntax.Abstract. Main defines the NummSquared abstract syntax types, and
some operators on these types.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 176 of 203

30.1 Dependencies

Require Import Poohbist. NummSquared.Fundamentals.Operators.Main.

Require Import Poohbist. NummSquared. Fundamentals.Booleans.Main.

Require Import Poohbist. NummSquared.Fundamentals.Naturals.Efficient. Main.
Require Import Poohbist. NummSquared. Fundamentals. Naturals.Efficient. AndLists.
Require Import Poohbist. NummSquared.Fundamentals.Optionals.Main.

Require Import Poohbist. NummSquared.Fundamentals.Lists.Main.

Require Import Poohbist. NummSquared.Fundamentals.Lists.Select.

30.2 NummSquared digit characters

A NummSquared digit character should be interpreted as the similarly named Unicode code point in the CO Controls
and Basic Latin range. See [38, "CO Controls and Basic Latin"].
Inductive Ns_Chr_Digit : Type :=

| Ns_Chr_Digit_d0: Ns_Chr_Digit

| Ns_Chr_Digit_d1: Ns_Chr_Digit

| Ns_Chr_Digit_d2: Ns_Chr_Digit

| Ns_Chr_Digit_d3: Ns_Chr_Digit

| Ns_Chr_Digit_d4 : Ns_Chr_Digit

| Ns_Chr_Digit_d5: Ns_Chr_Digit

| Ns_Chr_Digit_d6 : Ns_Chr_Digit

| Ns_Chr_Digit_d7 : Ns_Chr_Digit

| Ns_Chr_Digit_d8: Ns_Chr_Digit

| Ns_Chr_Digit_d9: Ns_Chr_Digit.

30.3 NummSquared digit character equals

(Ns-Chr_Digit_eq cd0 cdl) is the true Boolean if cd0 and cd 1 are structurally equal; and the false Boolean otherwise.
Definition Ns_Chr_Digit_eq := (fun cd0 cdl =
match cdo, cdl
return Boo
with
| Ns_Chr_Digit_d0, Ns_Chr_Digit_d0 = Boo-_t
| Ns_Chr_Digit_dl, Ns_Chr_Digit_d1 = Boo-t
| Ns_Chr_Digit_d2, Ns_Chr_Digit_d2 = Boo_t
| Ns_Chr_Digit_d3, Ns_Chr_Digit_d3 = Boo-_t
| Ns_Chr_Digit_d4, Ns_Chr_Digit_d4 = Boo_t
| Ns_Chr_Digit_d5, Ns_Chr_Digit_d5 = Boo_t
| Ns_Chr_Digit_d6, Ns-Chr_Digit_d6 = Boo-t
| Ns_Chr_Digit_d7, Ns_Chr_Digit_d7 = Boo_t
| Ns_Chr_Digit_d8, Ns_Chr_Digit_d8 = Boo-t
| Ns_Chr_Digit_d9, Ns_Chr_Digit_d9 = Boo_t
| -, - = Boo-f
end
) : (Boo_Pred_Bin_Conn Ns_Chr_Digit).

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 177 of 203

30.4 NummSquared identifier start characters

A NummSquared identifier start character should be interpreted as the similarly named Unicode code point in the
CO0 Controls and Basic Latin range. See [38, "CO0 Controls and Basic Latin"].
Inductive Ns_Chr_Ident_Start : Type :=

| Ns_Chr_Ident_Start_exclamationMark : Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_ampersand : Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_asterisk : Ns_Chr_Ident_Start

| Ns_Chr-Ident_Start_plusSign : Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_hyphenMinus: Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_slash : Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_lessThanSign : Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_equalsSign : Ns_Chr_Ident_Start

| Ns_Chr-Ident_Start_greaterThanSign : Ns_Chr-Ident_Start

| Ns_Chr_Ident_Start_A: Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_B: Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_C : Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_D: Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_E : Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_F : Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_G : Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_-H : Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_I : Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_] : Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_K : Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_L: Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_M : Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_N : Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_O : Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_P : Ns_Chr_Ident_Start

| Ns_Chr-Ident_Start_Q: Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_R: Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_S : Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_T : Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_U : Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_V : Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_W : Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_X : Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_Y : Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_Z : Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_circumflexAccent : Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_a: Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_b: Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_c: Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_d: Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_e: Ns_Chr_Ident_Start

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally

October 18, 2006 / 178 of 203

| Ns_Chr_Ident_Start_f : Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_g : Ns_Chr_Ident_Start
| Ns_Chr_Ident_Start_h: Ns_Chr_Ident_Start
| Ns_Chr_Ident_Start_i: Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_j: Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_k : Ns_Chr_Ident_Start
| Ns_Chr_Ident_Start_1: Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start-m: Ns_Chr_Ident_Start
| Ns_Chr_Ident_Start_n: Ns_Chr_Ident_Start
| Ns_Chr_Ident_Start-o: Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_p: Ns_Chr_Ident_Start
| Ns_Chr_Ident_Start_q: Ns_Chr_Ident_Start
| Ns_Chr_Ident_Start_r : Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_s: Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_t : Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_u: Ns_Chr_Ident_Start
| Ns_Chr_Ident_Start_v: Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_w: Ns_Chr_Ident_Start
| Ns_Chr_Ident_Start_x : Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_y : Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_z: Ns_Chr_Ident_Start

| Ns_Chr_Ident_Start_verticalBar : Ns_Chr_Ident_Start.

30.5 NummSquared identifier start character equals

(Ns_Chr_Ident_Start_eq cisO cisl) is the true Boolean if cis0 and cislI are structurally equal; and the false Boolean oth-

erwise.
Definition Ns_Chr_Ident_Start_eq := (fun cisO cis1 =

match cis0, cisl

return Boo

with

| Ns_Chr_Ident_Start_exclamationMark,
Ns_Chr_Ident_Start_exclamationMark =
Boo_t

| Ns_Chr_Ident_Start_ampersand, Ns_Chr_Ident_Start_ampersand = Boo_t

| Ns_Chr_Ident_Start_asterisk, Ns_Chr_Ident_Start_asterisk = Boo_t

| Ns_Chr_Ident_Start_plusSign, Ns_Chr_Ident_Start_plusSign = Boo_t

| Ns_Chr_Ident_Start_hyphenMinus, Ns_Chr_Ident_Start_hyphenMinus =
Boo_t

| Ns_Chr_Ident_Start_slash, Ns_Chr_Ident_Start_slash = Boo_t

| Ns_Chr_Ident_Start_lessThanSign, Ns_Chr_Ident_Start_lessThanSign =
Boo_t

| Ns_Chr_Ident_Start_equalsSign, Ns_Chr_Ident_Start_equalsSign = Boo_t

| Ns_Chr_Ident_Start_greaterThanSign,
Ns_Chr_Ident_Start_greaterThanSign =
Boo_t

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 179 of 203

| Ns_Chr_Ident_Start_A, Ns_Chr_Ident_Start_A = Boo_t

| Ns_Chr_Ident_Start_B, Ns_Chr_Ident_Start_B = Boo_t

| Ns_Chr_Ident_Start_C, Ns_Chr_Ident_Start_C = Boo_t

| Ns_Chr_Ident_Start_D, Ns_Chr_Ident_Start_D = Boo_t

| Ns_Chr_Ident_Start_E, Ns_Chr_Ident_Start_E = Boo-_t

| Ns_Chr_Ident_Start_F, Ns_Chr_Ident_Start_F = Boo_t

| Ns_Chr_Ident_Start_G, Ns_Chr_Ident_Start_G = Boo_t

| Ns_Chr_Ident_Start_H, Ns_Chr_Ident_Start_H = Boo_t

| Ns_Chr_Ident_Start_I, Ns_Chr_Ident_Start_I = Boo_t

| Ns_Chr_Ident_Start_], Ns_Chr_Ident_Start_] = Boo_t

| Ns_Chr_Ident_Start_K, Ns_Chr_Ident_Start_K = Boo_t

| Ns_Chr_Ident_Start_L, Ns_Chr_Ident_Start_L = Boo_t

| Ns_Chr_Ident_Start-M, Ns_Chr_Ident_Start-M = Boo_t

| Ns_Chr_Ident_Start_N, Ns_Chr_Ident_Start_N = Boo_t

| Ns_Chr_Ident_Start_O, Ns_Chr_Ident_Start_O = Boo_t

| Ns_Chr_Ident_Start_P, Ns_Chr_Ident_Start_P = Boo_t

| Ns_Chr_Ident_Start-Q, Ns-Chr_Ident_Start-Q = Boo_t

| Ns_Chr_Ident_Start_R, Ns_Chr_Ident_Start_R = Boo_t

| Ns_Chr_Ident_Start_S, Ns-Chr_Ident_Start_S = Boo-t

| Ns_Chr_Ident_Start_T, Ns_Chr_Ident_Start_T = Boo_t

| Ns_Chr_Ident_Start_U, Ns_Chr_Ident_Start_U = Boo-t

| Ns_Chr_Ident_Start_V, Ns_Chr_Ident_Start_V = Boo_t

| Ns_Chr_Ident_Start-W, Ns_Chr_Ident_Start_W = Boo_t

| Ns_Chr_Ident_Start_X, Ns_Chr_Ident_Start_X = Boo_t

| Ns_Chr_Ident_Start_Y, Ns_Chr_Ident_Start_.Y = Boo_t

| Ns_Chr_Ident_Start_Z, Ns_Chr_Ident_Start_Z = Boo_t

| Ns_Chr_Ident_Start_circumflexAccent,
Ns_Chr_Ident_Start_circumflexAccent =
Boo_t

| Ns_Chr_Ident_Start_a, Ns_Chr_Ident_Start_.a = Boo_t

| Ns_Chr_Ident_Start_b, Ns_Chr_Ident_Start_b = Boo_t

| Ns_Chr_Ident_Start_c, Ns_Chr_Ident_Start_c = Boo_t

| Ns_Chr_Ident_Start_d, Ns_Chr_Ident_Start_d = Boo_t

| Ns_Chr_Ident_Start_e, Ns_Chr_Ident_Start_e = Boo_t

| Ns_Chr_Ident_Start_f, Ns-Chr_Ident_Start_f = Boo_t

| Ns_Chr_Ident_Start_g, Ns_Chr_Ident_Start_g = Boo-t

| Ns_Chr_Ident_Start_h, Ns_Chr_Ident_Start_h = Boo_t

| Ns_Chr_Ident_Start_i, Ns_Chr_Ident_Start_i = Boo_t

| Ns_Chr_Ident_Start_j, Ns-Chr_Ident_Start_j = Boo_t

| Ns_Chr_Ident_Start_k, Ns_Chr_Ident_Start_k = Boo_t

| Ns_Chr_Ident_Start_l, Ns_Chr_Ident_Start_l = Boo_t

| Ns_Chr_Ident_Start_m, Ns_Chr_Ident_Start_m = Boo_t

| Ns_Chr_Ident_Start_n, Ns_Chr_Ident_Start_n = Boo-t

| Ns_Chr_Ident_Start_o, Ns_Chr_Ident_Start_o = Boo_t

| Ns_Chr_Ident_Start_p, Ns_Chr_Ident_Start_p = Boo-_t

| Ns_Chr_Ident_Start-q, Ns- Chr_Ident_Start_q = Boo_t

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally

October 18, 2006 / 180 of 203

| Ns_Chr_Ident_Start_r, Ns_Chr_Ident_Start_r = Boo_t

| Ns_Chr_Ident_Start_s, Ns_Chr_Ident_Start_s = Boo_t

| Ns_Chr_Ident_Start_t, Ns_Chr_Ident_Start_t = Boo_t

| Ns_Chr_Ident_Start_u, Ns_Chr_Ident_Start_u = Boo_t

| Ns_Chr_Ident_Start_v, Ns_Chr_Ident_Start_v = Boo_t

| Ns_Chr_Ident_Start_w, Ns_Chr_Ident_Start_w = Boo_t

| Ns_Chr_Ident_Start_x, Ns_Chr_Ident_Start_x = Boo_t

| Ns_Chr_Ident_Start_y, Ns_Chr_Ident_Start_y = Boo-t

| Ns_Chr_Ident_Start_z, Ns_Chr_Ident_Start_z = Boo_t

| Ns_Chr_Ident_Start_verticalBar, Ns_Chr_Ident_Start_verticalBar =
Boo_t

| -, - = Boo-f

end

) : (Boo-Pred_Bin_Conn Ns_Chr_Ident_Start).

30.6 NummSquared identifier continue characters

A NummSquared identifier continue character is exactly one of the following:

¢ a NummSquared identifier start character

* a NummSquared digit character

Note that a NummSquared identifier start character and a NummSquared digit character never have the same

Unicode code point.
Inductive Ns_Chr_Ident_Cont : Type :=

| Ns_Chr_Ident_Cont_ident_start : (Op Ns_Chr_Ident_Start Ns_Chr_Ident_Cont)

| Ns_Chr-Ident_Cont_digit : (Op Ns-Chr_Digit Ns_Chr_Ident_Cont).

30.7 NummSquared identifier continue character equals

(Ns_Chr_Ident_Cont_eq cicO cicl) is the true Boolean if cicO and cicl are structurally equal; and the false Boolean oth-

erwise.
Definition Ns_Chr_Ident_Cont_eq := (fun cic0 cicl =
match cic0, cicl
return Boo
with
| Ns_Chr_Ident_Cont_ident_start cis0,
Ns_Chr_Ident_Cont_ident_start cisl =
(Ns_Chr_Ident_Start_eq cisO cisl)
| Ns_Chr_Ident_Cont_digit cd0, Ns_Chr_Ident_Cont_digit cdl =
(Ns_Chr_Digit_eq cd0 cd1)
| -, - = Boo-f
end
) : (Boo-Pred_Bin_Conn Ns_Chr_Ident_Cont).

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 181 of 203

30.8 NummSquared comments

A NummSquared comment is an efficient natural number list.

Recall that natural numbers in the range 0-1114111 are Unicode code points. Natural numbers above this range
may be interpreted in whatever way you wish.
Definition Ns_Comment := Nat_Eff_Lis : Type.

30.9 NummSquared comment equals

(Ns-Comment_eq comment0 commentl) is (Ns_Eff-Lis_eq comment0 comment]).
Definition Ns_Comment_eq := (fun comment0 commentl =
(Nat_Eff-Lis_eq comment0 commentl)
) : (Boo_Pred_Bin_Conn Ns_Comment).

30.10 NummSquared simple identifiers
A NummSquared simple identifier ids contains all of the following:
e the start of ids, which is a NummSquared identifier start character
¢ the continues of ids, which is a list of NummSquared identifier continue characters

Record Ns_Ident_Simp : Type := Ns_Ident_Simp_ctor {
Ns_Ident_Simp_start : Ns_Chr_Ident_Start;
Ns_Ident_Simp_conts : (Lis Ns_Chr_Ident_Cont)

30.11 NummSquared simple identifier equals

(Ns_Ident_Simp_eq ids0 idsI) is the true Boolean if ids0 and idsI are structurally equal; and the false Boolean other-
wise.
Definition Ns_Ident_Simp_eq := (fun ids0 idsl =

if
(Ns_Chr_Ident_Start_eq
(Ns_Ident_Simp_start ids0)
(Ns_Ident_Simp_start ids1)
)
return Boo
then
(Lis_rel_conn
Ns_Chr_Ident_Cont
Ns_Chr_Ident-Cont_eq
(Ns_Ident_Simp_conts ids0)
(Ns_Ident_Simp_conts idsl)
)
else Boo_f

) : (Boo-Pred_Bin_Conn Ns_Ident_Simp).

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 182 of 203

30.12 NummSquared identifiers

A NummSquared identifier is a non-empty list of NummSquared simple identifiers.
Definition Ns_Ident := (Lis-Ne Ns_Ident_Simp).

30.13 NummSquared identifier equals

(Ns_Ident_eq id0 id1) is the true Boolean if id0 and id1 are structurally equal; and the false Boolean otherwise.
Definition Ns_Ident_eq := (fun id0 idl =
(Lis-Ne_rel_conn Ns_Ident_Simp Ns_Ident_Simp_eq id0 id1)
) : (Boo_Pred_Bin_Conn Ns_Ident).

30.14 NummSquared simple identifier to NummSquared identifier

(Ns_Ident_Simp_to_Ns_Ident ids) is the NummSquared identifier containing just ids.
Definition Ns_Ident_Simp_to_Ns_Ident := (fun ids =

(Lis_Ne_singleton Ns_Ident_Simp ids)

) : (Op Ns_Ident_Simp Ns_Ident).

30.15 NummSquared natural number primitives

A NummSquared natural number primitive is an efficient natural number.
Definition Ns_Prim_Nat := Nat_Eff : Type.

30.16 NummSquared natural number primitive equals

(Ns_Prim_Nat_eq m0 ml) is (Nat_Eff-eq m0 m1).
Definition Ns_Prim_Nat_eq := (fun m0 ml =
(Nat_Eff-eq m0 m1I)
) : (Boo-Pred_Bin_Conn Ns_Prim_Nat).

30.17 NummSquared character primitives
A NummSquared character primitive is an efficient natural number.

Recall that natural numbers in the range 0-1114111 are Unicode code points. Natural numbers above this range
may be interpreted in whatever way you wish.
Definition Ns_Prim_Chr := Nat_Eff : Type.

30.18 NummSquared character primitive equals

(Ns_Prim_Chr_eq m0 ml) is (Nat_Eff-eq m0 m1I).
Definition Ns_Prim_Chr_eq := (fun m0 ml =
(Nat_Eff-eq m0 m1I)
) : (Boo_Pred_Bin_Conn Ns_Prim_Chr).

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 183 of 203

30.19 NummSquared string primitives
A NummSquared string primitive is an efficient natural number list.

Recall that natural numbers in the range 0-1114111 are Unicode code points. Natural numbers above this range
may be interpreted in whatever way you wish.
Definition Ns_Prim_Str:= Nat_Eff-Lis: Type.

30.20 NummSquared string primitive equals

(Ns_Prim_Str_eq str0 strl) is (Ns_Eff-Lis_eq str0 strl).
Definition Ns_Prim_Str_eq:= (fun str0 strl =
(Nat_Eff-Lis_eq str0 strl)
) : (Boo_Pred_Bin_Conn Ns_Prim_Str).

30.21 NummSquared primitives

A NummSquared primitive is exactly one of the following:

* a NummSquared natural number primitive
* a NummSquared character primitive

¢ a NummSquared string primitive

Inductive Ns_Prim: Type :=
| Ns_Prim_nat : (Op Ns_Prim_Nat Ns_Prim)
| Ns_Prim_chr: (Op Ns_Prim_Chr Ns_Prim)
| Ns_Prim_str: (Op Ns_Prim_Str Ns_Prim).

30.22 NummSquared primitive equals

(Ns_Prim_eq prim0 priml) is the true Boolean if prim0 and prim1I are structurally equal (except using Nat_Eff_eq);
and the false Boolean otherwise.
Definition Ns_Prim_eq := (fun prim0 priml =
match prim0, priml
return Boo
with
| Ns_Prim_nat m0, Ns_Prim_nat ml = (Ns_Prim_Nat_eq m0 mlI)
| Ns_Prim_chr mO, Ns_Prim_chr m1 = (Ns_Prim_Chr_eq m0 m1)
| Ns_Prim_str str0, Ns_Prim_str str1 = (Ns_Prim_Str_eq str0 strl)
| -, - = Boo_f
end
) : (Boo-Pred_Bin_Conn Ns_Prim).

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 184 of 203

30.23 NummSquared computational normalized constants
A NummSquared computational normalized constant is exactly one of the following:
¢ the identity NummSquared computational normalized constant
e the null NummSquared computational normalized constant
* the zero NummSquared computational normalized constant
* the one NummSquared computational normalized constant
* the null set NummSquared computational normalized constant
¢ the nuro set NummSquared computational normalized constant
¢ the leaf set NummSquared computational normalized constant
¢ the tree set NummSquared computational normalized constant
¢ the domain NummSquared computational normalized constant
¢ the null predicate NummSquared computational normalized constant

¢ the pair predicate NummSquared computational normalized constant

Inductive Ns_Constant_Norm_Compu : Type :=
| Ns_Constant_Norm_Compu_i: Ns_Constant_Norm_Compu
| Ns_Constant_Norm_Compu_null : Ns_Constant-Norm_Compu
| Ns_Constant_Norm_Compu_zero: Ns_Constant_Norm_Compu
| Ns_Constant_Norm_Compu_one: Ns_Constant_Norm_Compu
| Ns_Constant-Norm_Compu_-Null_set : Ns_Constant-Norm_Compu
| Ns_Constant_Norm_Compu_Nuro_set : Ns_Constant_Norm_Compu
| Ns_Constant-Norm_Compu.-Leaf-set : Ns_Constant-Norm_Compu
| Ns_Constant_Norm_Compu_Tree_set : Ns_Constant_Norm_Compu
| Ns_Constant-Norm_Compu_-dom : Ns_Constant_Norm_Compu
| Ns_Constant_Norm_Compu_Null: Ns_Constant_Norm_Compu
| Ns_Constant_Norm_Compu_Pair : Ns_Constant_Norm_Compu.

30.24 NummSquared non-computational normalized constants

A NummSquared non-computational normalized constant is exactly one of the following:
¢ the equals NummSquared non-computational normalized constant

Inductive Ns_Constant_Norm_Noncompu : Type :=
| Ns_Constant_Norm_Noncompu_ns_eq : Ns_Constant_Norm_Noncompu.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 185 of 203

30.25 NummSquared normalized constants
A NummSquared normalized constant is exactly one of the following:
* a NummSquared computational normalized constant

¢ a NummSquared non-computational normalized constant

Inductive Ns_Constant_Norm : Type :=
| Ns_Constant_Norm_compu : (Op Ns_Constant-Norm_Compu Ns_Constant_Norm)
| Ns_Constant_-Norm_noncompu :
(Op Ns_Constant_Norm_Noncompu Ns_Constant_Norm).

30.26 NummSquared computational non-normalized constants
A NummSquared computational non-normalized constant is exactly one of the following:
¢ the left NummSquared computational non-normalized constant
¢ the right NummSquared computational non-normalized constant
¢ the confirmation with null NummSquared computational non-normalized constant
¢ the negation with null NummSquared computational non-normalized constant
¢ the null to zero NummSquared computational non-normalized constant
* the zero predicate NummSquared computational non-normalized constant
* the one predicate NummSquared computational non-normalized constant
e the nuro predicate NummSquared computational non-normalized constant
¢ the leaf predicate NummSquared computational non-normalized constant
e the simple predicate NummSquared computational non-normalized constant
e the rule predicate NummSquared computational non-normalized constant
* the tree predicate step pair unguarded NummSquared computational non-normalized constant
e the tree predicate step unguarded NummsSquared computational non-normalized constant
e the tree predicate NummSquared computational non-normalized constant
* the non-empty domain NummSquared computational non-normalized constant
¢ the result NummSquared computational non-normalized constant
* the nuro set result NummSquared computational non-normalized constant
¢ the tree set result NummSquared computational non-normalized constant

* the dependent sum result left unguarded NummSquared computational non-normalized constant

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 186 of 203

* the dependent sum result right unguarded NummSquared computational non-normalized constant

* the dependent sum result unguarded NummSquared computational non-normalized constant

* the dependent sum result NummSquared computational non-normalized constant

* the dependent product result uncurry unguarded NummsSquared computational non-normalized constant
* the dependent product result unguarded NummSquared computational non-normalized constant

* the dependent product result NummSquared computational non-normalized constant

* the negation NummSquared computational non-normalized constant

e the implication with null NummSquared computational non-normalized constant

* the implication NummSquared computational non-normalized constant

Inductive Ns_Constant_Nonnorm_Compu : Type :=
| Ns_Constant-Nonnorm-Compu_left : Ns_Constant_Nonnorm-Compu
| Ns_Constant_Nonnorm_Compu_right : Ns_Constant-Nonnorm_Compu
| Ns_Constant_Nonnorm_Compu-conf_-n: Ns_Constant-Nonnorm_Compu
| Ns_Constant_Nonnorm_Compu_not_n: Ns_Constant_Nonnorm_Compu
| Ns_Constant_Nonnorm_Compu_Null_to_Zero : Ns_Constant_Nonnorm_Compu
| Ns_Constant_Nonnorm_Compu_Zero : Ns_Constant_Nonnorm_Compu
| Ns_Constant_Nonnorm_Compu_One : Ns_Constant_Nonnorm_Compu
| Ns-Constant-Nonnorm_-Compu-Nuro : Ns-Constant_Nonnorm-Compu
| Ns_Constant_Nonnorm_Compu_Leaf : Ns_Constant_Nonnorm_Compu
| Ns_Constant-Nonnorm_-Compu_-Simp : Ns_Constant-Nonnorm-Compu
| Ns_Constant_Nonnorm_Compu_Rule : Ns_Constant_Nonnorm_Compu
| Ns_Constant_-Nonnorm_Compu-Tree_step_pair-ug : Ns_Constant-Nonnorm_Compu
| Ns_Constant_Nonnorm_Compu_Tree_step_ug : Ns_Constant_Nonnorm_Compu
| Ns_Constant-Nonnorm_-Compu-Tree: Ns_Constant-Nonnorm_Compu
| Ns_Constant_Nonnorm_Compu_dom_ne : Ns_Constant-Nonnorm_Compu
| Ns_Constant_Nonnorm_Compu-res : Ns_Constant_ Nonnorm_Compu
| Ns_Constant_Nonnorm_Compu_Nuro_set_res : Ns_Constant_Nonnorm_Compu
| Ns_Constant_Nonnorm_Compu_Tree_set_res : Ns_Constant-Nonnorm_Compu
| Ns_Constant-Nonnorm-Compu_s-d-res_left_ug : Ns_Constant_Nonnorm_-Compu
| Ns_Constant_Nonnorm_Compu_s_d_res_right_ug : Ns_Constant_Nonnorm_Compu
| Ns_Constant-Nonnorm_-Compu_s-d-res-ug : Ns_Constant-Nonnorm_Compu
| Ns_Constant_Nonnorm_Compu_s_d_res : Ns_Constant_Nonnorm_Compu
| Ns_Constant-Nonnorm_Compu_-p-d-res_-uncurry-ug : Ns_Constant_Nonnorm_Compu
| Ns_Constant_Nonnorm_Compu_p_d_res_ug : Ns_Constant_Nonnorm_Compu
| Ns-Constant-Nonnorm_-Compu_-p-d-res: Ns-Constant_Nonnorm_Compu
| Ns_Constant_Nonnorm_Compu_not : Ns_Constant_Nonnorm_Compu
| Ns_Constant_Nonnorm_Compu_imp_n: Ns_Constant-Nonnorm_Compu
| Ns_Constant_Nonnorm_Compu_imp : Ns_Constant_Nonnorm_Compu.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 187 of 203

30.27 NummSquared non-computational non-normalized constants

A NummSquared non-computational non-normalized constant is exactly one of the following:

¢ the not equals NummSquared non-computational non-normalized constant

e the small universal quantification NummSquared non-computational non-normalized constant
¢ the equal pairs unguarded NummSquared non-computational non-normalized constant

e the equal results at NummSquared non-computational non-normalized constant

¢ the equal results NummSquared non-computational non-normalized constant

¢ the equal domain results NummSquared non-computational non-normalized constant

¢ the equal both results NummSquared non-computational non-normalized constant

¢ the equals right-hand-side NummSquared non-computational non-normalized constant

Inductive Ns_Constant_Nonnorm_Noncompu : Type :=
| Ns_Constant_Nonnorm_Noncompu_not-eq : Ns_Constant_Nonnorm_Noncompu
| Ns_Constant_Nonnorm_Noncompu_all_sm: Ns_Constant_Nonnorm_Noncompu
| Ns_Constant_Nonnorm_Noncompu_eq-pair-ug : Ns_Constant_ Nonnorm_Noncompu
| Ns_Constant_Nonnorm_Noncompu_eq_res_at : Ns_Constant_Nonnorm_Noncompu
| Ns_Constant_Nonnorm_Noncompu_eq-res : Ns_Constant-Nonnorm_Noncompu
| Ns_Constant-Nonnorm_Noncompu_eq-dom_res : Ns_Constant-Nonnorm-Noncompu
| Ns_Constant-Nonnorm_Noncompu_eq_both_res : Ns_Constant_Nonnorm_Noncompu
| Ns_Constant-Nonnorm_Noncompu_eq-rhs: Ns_Constant-Nonnorm_Noncompu.

30.28 NummSquared non-normalized constants

A NummSquared non-normalized constant is exactly one of the following:

* a NummSquared computational non-normalized constant

¢ a NummSquared non-computational non-normalized constant

Inductive Ns_Constant_Nonnorm: Type :=
| Ns_Constant_Nonnorm_compu :
(Op Ns_Constant- Nonnorm_-Compu Ns_Constant-Nonnorm)
| Ns_Constant_Nonnorm_noncompu :
(Op Ns_Constant_ Nonnorm_Noncompu Ns_Constant_Nonnorm,).

30.29 NummSquared constants

A NummSquared constant is exactly one of the following:

e a NummSquared normalized constant

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 188 of 203

¢ a NummSquared non-normalized constant

Inductive Ns_Constant : Type :=
| Ns_Constant_norm : (Op Ns_Constant_-Norm Ns_Constant)
| Ns_Constant_nonnorm: (Op Ns_Constant_ Nonnorm Ns_Constant).

30.30 NummSquared large functions

A NummSquared large composition computational combination c contains all of the following:

* the outer of ¢, which is a NummSquared large function

¢ the inners of ¢, which is a NummSquared large function non-empty list

A NummSquared small composition computational combination ¢ contains all of the following:

* the called and arguments of ¢, which is a NummSquared large function 2 plus list

A NummSquared tuple computational combination ¢ contains all of the following:

* the components of ¢, which is a NummSquared large function 2 plus list

A NummSquared list computational combination c contains all of the following:

* the elements of ¢, which is a NummSquared large function list

A NummSquared dependent sum computational combination ¢ contains all of the following:

e the family of ¢, which is a NummSquared large function

A NummSquared dependent product computational combination c contains all of the following:

e the family of ¢, which is a NummSquared large function

A NummSquared Curry computational combination ¢ contains all of the following:

* theroot of ¢, which is a NummSquared large function

e the restrictor of ¢, which is a NummSquared large function

A NummSquared if-then-else computational combination c contains all of the following:

¢ the if-part of ¢, which is a NummSquared large function
¢ the then-part of ¢, which is a NummSquared large function

¢ the else-part of ¢, which is a NummSquared large function

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 189 of 203

A NummSquared recursion computational combination ¢ contains all of the following:

e the start of ¢, which is a NummSquared large function

¢ the step of ¢, which is a NummSquared large function

A NummSquared restrict computational combination c contains all of the following:

¢ theroot of ¢, which is a NummSquared large function

A NummSquared restrict to range computational combination c contains all of the following:

¢ theroot of ¢, which is a NummSquared large function

A NummSquared Curry augmented root computational combination ¢ contains all of the following:

¢ the root of ¢, which is a NummSquared large function

 the augmentor of ¢, which is a NummSquared large function

A NummSquared Curry augmented computational combination ¢ contains all of the following:

¢ theroot of ¢, which is a NummSquared large function
¢ the restrictor of ¢, which is a NummSquared large function

* the augmentor of ¢, which is a NummSquared large function

A NummSquared Curry result computational combination c contains all of the following:

¢ the root of ¢, which is a NummSquared large function

A NummSquared recursion on domain computational combination ¢ contains all of the following:

e the start of ¢, which is a NummSquared large function

* the step of ¢, which is a NummSquared large function

A NummSquared recursion on range computational combination c contains all of the following:

e the start of ¢, which is a NummSquared large function

* the step of ¢, which is a NummSquared large function

A NummSquared recursion step computational combination ¢ contains all of the following:

e the start of ¢, which is a NummSquared large function

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 190 of 203

* the step of ¢, which is a NummSquared large function

A NummSquared recursion right-hand-side computational combination c contains all of the following:

e the start of ¢, which is a NummSquared large function

¢ the step of ¢, which is a NummSquared large function

A NummSquared computational combination is exactly one of the following:

e a NummSquared large composition computational combination

e a NummSquared small composition computational combination

e a NummSquared tuple computational combination

e a NummSquared list computational combination

e a NummSquared dependent sum computational combination

e a NummsSquared dependent product computational combination

e a NummSquared Curry computational combination

¢ a NummSquared if-then-else computational combination

¢ a NummSquared recursion computational combination

¢ a NummsSquared restrict computational combination

¢ a NummSquared restrict to range computational combination

* a NummSquared Curry augmented root computational combination
* a NummSquared Curry augmented computational combination

* a NummSquared Curry result computational combination

* a NummSquared recursion on domain computational combination
¢ a NummSquared recursion on range computational combination

e a NummSquared recursion step computational combination

¢ a NummSquared recursion right-hand-side computational combination

A NummSquared Hilbert non-computational combination ¢ contains all of the following:

e the predicate of ¢, which is a NummSquared large function

A NummSquared existential quantification unguarded non-computational combination ¢ contains all of the fol-
lowing:

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 191 of 203

¢ the predicate of ¢, which is a NummSquared large function

A NummSquared existential quantification non-computational combination ¢ contains all of the following:

e the predicate of ¢, which is a NummSquared large function

A NummSquared not universal quantification non-computational combination c contains all of the following:

¢ the predicate of ¢, which is a NummSquared large function

A NummSquared universal quantification non-computational combination ¢ contains all of the following:

* the predicate of ¢, which is a NummSquared large function

A NummSquared unary universal quantification non-computational combination ¢ contains all of the following:

¢ the predicate of ¢, which is a NummSquared large function

A NummSquared inductive domain hypothesis non-computational combination c contains all of the following:

e the predicate of ¢, which is a NummSquared large function

A NummSquared inductive range hypothesis non-computational combination ¢ contains all of the following:

* the predicate of ¢, which is a NummSquared large function

A NummSquared inductive case at non-computational combination ¢ contains all of the following:

e the predicate of ¢, which is a NummSquared large function

A NummSquared inductive case non-computational combination ¢ contains all of the following:

e the predicate of ¢, which is a NummSquared large function

A NummSquared non-computational combination is exactly one of the following:

¢ a NummsSquared Hilbert non-computational combination

* a NummSquared existential quantification unguarded non-computational combination
¢ a NummSquared existential quantification non-computational combination

¢ a NummSquared not universal quantification non-computational combination

* a NummSquared universal quantification non-computational combination

* a NummSquared unary universal quantification non-computational combination

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 192 of 203

* a NummSquared inductive domain hypothesis non-computational combination
* a NummSquared inductive range hypothesis non-computational combination
e a NummSquared inductive case at non-computational combination

¢ a NummSquared inductive case non-computational combination

A NummSquared combination is exactly one of the following:

¢ a NummSquared computational combination

¢ a NummsSquared non-computational combination

A NummSquared computation computation contains all of the following:

¢ the called of compuation, which is a NummSquared large function

A NummSquared quotation quotation contains all of the following:

* the unquoted of quotation, which is a NummSquared large function

A NummSquared unquotation unquotation contains all of the following:

¢ the quoted of unquotation, which is a NummSquared large function

A NummSquared macro expansion macroExpansion contains all of the following:

¢ the called of macroExpansion, which is a NummSquared large function

¢ the arguments of macroExpansion, which is a NummSquared large function list

A NummSquared large function is exactly one of the following:

¢ a NummSquared primitive

* a NummSquared constant

e a NummSquared combination

» for some NummSquared identifier id, the global name NummSquared large function of id
» for some NummSquared identifier id, the local name NummSquared large function of id
¢ a NummSquared computation

e a NummSquared quotation

¢ a NummSquared unquotation

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 193 of 203

¢ a NummSquared macro expansion

A NummSquared large function list is exactly one of the following:

¢ the nil NummSquared large function list

» for some NummSquared large function head and NummSquared large function list rest, the cons Numm-
Squared large function list of head and rest

A NummSquared large function non-empty list / contains all of the following:

¢ the head of /, which is a NummSquared large function

¢ the rest of /, which is a NummSquared large function list

A NummSquared large function 2 plus list / contains all of the following:

e the head of /, which is a NummSquared large function

¢ the rest of /, which is a NummSquared large function non-empty list

Inductive Ns_Combo_Compu_Co_Lg : Type :=
| Ns_Combo_-Compu_Co-Lg-ctor :
(Op-Bin Ns_Func_Lg Ns_Func_Lg_Lis_Ne Ns_Combo_Compu_Co_Lg)
with Ns-Combo-Compu_Co_-Sm: Type:=
| Ns_Combo_Compu_Co_Sm_ctor : (Op Ns_Func_Lg_Lis_P2 Ns_Combo_Compu_Co_Sm)
with Ns_Combo-Compu_Tuple: Type :=
| Ns_Combo_Compu_Tuple_ctor : (Op Ns_Func_Lg_Lis_P2 Ns_Combo_Compu_Tuple)
with Ns_Combo_Compu_Lis: Type :=
| Ns-Combo_-Compu_Lis_ctor : (Op Ns-Func_Lg-Lis Ns_Combo-Compu_Lis)
with Ns_Combo_Compu_S_D: Type :=
| Ns_Combo_-Compu_S_D_ctor : (Op Ns_Func-Lg Ns-Combo_Compu_S_D)
with Ns_Combo_Compu_P_D: Type :=
| Ns_Combo_-Compu_P_D_ctor : (Op Ns_Func-Lg Ns_-Combo_-Compu_P_D)
with Ns_Combo_Compu_C: Type :=
| Ns_-Combo-Compu_C_ctor : (Op-Bin_-Conn Ns_Func-Lg Ns_Combo_-Compu_C)
with Ns_Combo_Compu_Ite: Type :=
| Ns-Combo_Compu_Ite_ctor : (Op-Tri-Conn Ns_Func-Lg Ns_Combo-Compu_Ite)
with Ns_Combo_Compu_R: Type :=
| Ns_Combo_Compu_R_ctor: (Op-Bin_Conn Ns_Func_Lg Ns_Combo_Compu_R)
with Ns_Combo_Compu_Restrict : Type :=
| Ns_Combo_Compu_Restrict_ctor : (Op Ns_Func_Lg Ns_Combo_Compu_Restrict)
with Ns_Combo_Compu_Restrict_Ran : Type :=
| Ns_Combo_Compu_Restrict_Ran_ctor :
(Op Ns_Func_Lg Ns_Combo-Compu_Restrict_Ran)
with Ns_Combo_Compu_C_Aug_Root : Type :=
| Ns_Combo-Compu_C_Aug_Root_ctor :

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 194 of 203

(Op-Bin_Conn Ns_Func_Lg Ns_Combo_-Compu_C_Aug_Root)
with Ns_Combo_Compu_C_Aug : Type :=
| Ns_Combo_Compu_C_Aug_ctor : (Op_Tri_Conn Ns_Func_Lg Ns_Combo_Compu_C_Aug)
with Ns_Combo_-Compu_C_Res: Type :=
| Ns_Combo_Compu_C_Res_ctor : (Op Ns_Func_Lg Ns_Combo_Compu_C_Res)
with Ns_Combo_Compu_-R_Dom : Type :=
| Ns_Combo_Compu_R_Dom_ctor: (Op-Bin_Conn Ns_Func_Lg Ns_Combo_Compu_R_Dom)
with Ns_-Combo_-Compu_-R_Ran: Type =
| Ns_Combo_Compu_R_Ran_ctor: (Op-Bin_Conn Ns_Func_Lg Ns_Combo_Compu_R_Ran)
with Ns-Combo_-Compu_R_Step : Type :=
| Ns_Combo_Compu_R_Step_ctor :
(Op-Bin_Conn Ns_Func_Lg Ns_Combo_Compu_R_Step)
with Ns_Combo_-Compu_R_Rhs: Type :=
| Ns_Combo_Compu_R_Rhs_ctor : (Op-Bin_Conn Ns_Func_Lg Ns_Combo_Compu_R_Rhs)
with Ns_Combo_Compu : Type :=
| Ns_Combo_Compu_co_lg : (Op Ns_Combo_Compu_Co_Lg Ns_Combo_Compu)
| Ns_Combo_-Compu-_co_sm: (Op Ns-Combo-Compu-Co-Sm Ns_Combo-Compu)
| Ns_Combo_Compu_tuple: (Op Ns_Combo_-Compu_Tuple Ns_Combo_Compu)
| Ns_Combo_-Compu_lis: (Op Ns-Combo-Compu-Lis Ns-Combo-Compu)
| Ns_Combo_Compu_s_d: (Op Ns_-Combo_Compu_S_D Ns_Combo_Compu)
| Ns-Combo_Compu_p-d: (Op Ns-Combo-Compu_P_D Ns_Combo_Compu)
| Ns_Combo_Compu_c: (Op Ns_Combo_Compu_C Ns_Combo_Compu)
| Ns_Combo_Compu_ite: (Op Ns_Combo_-Compu_Ite Ns_-Combo_Compu)
| Ns_Combo_-Compu_r: (Op Ns-Combo-Compu-R Ns_Combo-Compu)
| Ns_Combo_Compu_restrict : (Op Ns_Combo_-Compu_Restrict Ns_Combo_-Compu)
| Ns-Combo_-Compu_restrict_ran:
(Op Ns_Combo_Compu_Restrict-Ran Ns_Combo_Compu)
| Ns_Combo-Compu_c_-aug-root : (Op Ns-Combo_Compu-C_Aug-Root Ns_-Combo_Compu)
| Ns_Combo_Compu_c_aug : (Op Ns_Combo_Compu_C_Aug Ns_Combo_Compu)
| Ns_Combo_-Compu-_c_res: (Op Ns-Combo_Compu_C_Res Ns_Combo_-Compu)
| Ns_Combo_Compu_r_dom: (Op Ns_Combo_Compu_R_Dom Ns_Combo_Compu)
| Ns-Combo_Compu_r_ran: (Op Ns-Combo_Compu_R_Ran Ns_Combo_Compu)
| Ns_Combo_Compu_r_step: (Op Ns_Combo_Compu_R_Step Ns_Combo_Compu)
| Ns_Combo_Compu_r_rhs: (Op Ns-Combo_Compu_R_Rhs Ns_Combo_Compu)
with Ns_Combo_Noncompu_H : Type :=
| Ns_Combo_Noncompu_H_ctor : (Op Ns_Func_Lg Ns_Combo_Noncompu_H)
with Ns_Combo_Noncompu_Exist_Ug : Type :=
| Ns_Combo_Noncompu_Exist_Ug-_ctor :
(Op Ns_Func_Lg Ns_Combo_-Noncompu_Exist_Ug)
with Ns_Combo_Noncompu_Exist : Type :=
| Ns_Combo_-Noncompu_Exist_ctor : (Op Ns-Func-Lg Ns_Combo_-Noncompu_Exist)
with Ns_Combo_Noncompu_Not_All: Type :=
| Ns-Combo_Noncompu_Not_All_ctor : (Op Ns_Func-Lg Ns_Combo-Noncompu_Not_All)
with Ns_Combo_Noncompu_All: Type :=
| Ns_Combo_Noncompu_All_ctor : (Op Ns_Func_Lg Ns_Combo_Noncompu_All)
with Ns_Combo_Noncompu_All_Una: Type :=

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 195 of 203

| Ns_Combo_Noncompu_All_Una_ctor : (Op Ns_Func_-Lg Ns_Combo_Noncompu_All_Una)
with Ns_Combo_Noncompu_Induc-Hyp_-Dom : Type :=
| Ns_Combo_Noncompu_Induc_Hyp-Dom_ctor :
(Op Ns_Func_Lg Ns_Combo_Noncompu_Induc_ Hyp-Dom)
with Ns_Combo_Noncompu_Induc_Hyp_Ran: Type :=
| Ns_-Combo_-Noncompu_Induc_-Hyp-Ran_ctor :
(Op Ns_Func_Lg Ns_Combo_Noncompu_Induc_Hyp_Ran)
with Ns-Combo_-Noncompu_Induc_Case_At : Type :=
| Ns_Combo_Noncompu_Induc_Case_At_ctor :
(Op Ns_Func_Lg Ns_Combo-Noncompu_Induc-Case_At)
with Ns_Combo_Noncompu_Induc_Case: Type :=
| Ns_Combo_Noncompu_Induc_Case_ctor :
(Op Ns_Func_Lg Ns_Combo_Noncompu_Induc-Case)
with Ns_Combo_Noncompu : Type :=
| Ns_Combo_-Noncompu_h: (Op Ns-Combo-Noncompu-H Ns_Combo-Noncompu)
| Ns_Combo_Noncompu_exist_ug :
(Op Ns_Combo_Noncompu_Exist_Ug Ns_Combo_Noncompu)
| Ns_Combo_Noncompu_exist : (Op Ns_Combo_Noncompu_Exist Ns_Combo_Noncompu)
| Ns_Combo_-Noncompu_not_all :
(Op Ns_Combo_Noncompu_Not_All Ns_Combo_Noncompu)
| Ns-Combo_Noncompu_all : (Op Ns_Combo_Noncompu_All Ns_Combo_Noncompu)
| Ns_Combo_Noncompu_all_una:
(Op Ns_Combo_Noncompu_All_Una Ns_Combo_Noncompu)
| Ns_Combo_-Noncompu_induc-hyp-dom :
(Op Ns_Combo_Noncompu_Induc_Hyp_-Dom Ns_Combo_Noncompu)
| Ns_Combo-Noncompu_induc-hyp_ran:
(Op Ns_Combo_Noncompu_Induc_Hyp_Ran Ns_Combo_Noncompu)
| Ns_Combo_-Noncompu_induc-case_at :
(Op Ns_Combo_Noncompu_Induc_Case_At Ns_Combo_Noncompu)
| Ns_Combo_-Noncompu_induc-case:
(Op Ns_Combo_Noncompu_Induc_Case Ns_Combo_Noncompu)
with Ns_-Combo : Type :=
| Ns_Combo_compu : (Op Ns_Combo_Compu Ns_Combo)
| Ns_Combo_noncompu : (Op Ns_Combo_Noncompu Ns_Combo)
with Ns_Computation : Type :=
| Ns_ Computation_ctor : (Op Ns_Func_Lg Ns_Computation)
with Ns_Quotation : Type :=
| Ns_Quotation_ctor : (Op Ns_Func_Lg Ns_Quotation)
with Ns_Unquotation: Type :=
| Ns_Unquotation_ctor : (Op Ns_Func_Lg Ns_Unquotation)
with Ns_-Macro_Expansion: Type :=
| Ns_Macro_Expansion_ctor :
(Op-Bin Ns_Func_Lg Ns_Func_Lg_Lis Ns_Macro_Expansion)
with Ns_Func_Lg : Type :=
| Ns_Func_Lg_prim: (Op Ns_Prim Ns_Func_Lg)
| Ns_Func_Lg-constant : (Op Ns_Constant Ns-Func_Lg)

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally

October 18, 2006 / 196 of 203

| Ns_Func_Lg_combo: (Op Ns_Combo Ns_Func_Lg)
| Ns_Func_Lg-name_glob: (Op Ns_Ident Ns_Func_Lg)
| Ns_Func_Lg_name_loc: (Op Ns_Ident Ns_Func_Lg)
| Ns_Func_Lg-computation: (Op Ns-Computation Ns_-Func_Lg)
| Ns_Func_Lg_quotation: (Op Ns_Quotation Ns_Func_Lg)
| Ns_Func_Lg-unquotation : (Op Ns_Unquotation Ns_Func_Lg)
| Ns_Func_Lg_macro_expansion: (Op Ns_Macro_Expansion Ns_Func_Lg)
with Ns_Func_Lg_Lis: Type :=
| Ns_Func_Lg_Lis_nil: Ns_Func_Lg_Lis
| Ns_Func_Lg_Lis_cons: (Op_Bin Ns_Func_Lg Ns_Func_Lg_Lis Ns_Func_Lg_Lis)
with Ns_Func_Lg_Lis_Ne: Type :=
| Ns_Func_Lg_Lis_Ne_ctor :
(Op-Bin Ns_Func_Lg Ns_Func_Lg_Lis Ns_Func_Lg_Lis_Ne)
with Ns_Func_Lg_Lis_P2: Type :=
| Ns_Func_Lg_Lis_P2_ctor :
(Op-Bin Ns_Func_Lg Ns_Func_Lg_Lis_Ne Ns_Func_Lg_Lis_P2).

30.31 NummSquared local tuple accessor lists

A NummSquared local tuple accessor list is a 2 plus list of NummSquared identifiers.

The order is reversed relative to the concrete syntax.
Definition Ns_Access_Tuple_Loc-Lis := (Lis- P2 Ns_Ident).

30.32 NummSquared local contexts

A NummSquared local context is an optional NummSquared local tuple accessor list.
Definition Ns_Context_Loc := (Optional Ns_Access_Tuple_Loc-Lis).

30.33 NummSquared definitions

Record Ns_Def : Type := Ns_Def_ctor {
Ns_Def_-comment : Ns_Comment;
Ns_Def-name: Ns_Ident;
Ns_Def-context_loc: Ns_Context_Loc;
Ns_Def_rhs: Ns_Func_Lg

30.34 NummSquared global contexts

The order is reversed relative to the concrete syntax.
Definition Ns_Context_Glob := (Lis Ns_Def).

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 197 of 203

30.35 NummSquared modules

Record Ns_Modu : Type := Ns-Modu_ctor {

Ns_Modu_comment : Ns_Comment;
Ns_Modu_name : Ns_Ident;
Ns_Modu_context_glob: Ns_Context_Glob

30.36 NummSquared abstract programs

The order is reversed relative to the concrete syntax.
Definition Ns_Program_Abs := (Lis Ns_-Modu).

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

Thorsten Altenkirch and Conor McBride. Towards observational type theory. Manuscript, available online,
February 2006. URL http://www.cs.nott.ac.uk/~txa/.

James H. Andrews. A weakly-typed higher order logic with general lambda terms and Y combinator. In Proceed-
ings, Works In Progress Track, 15th International Conference on Theorem Proving in Higher Order Logics, number
CP-2002-211736. NASA Conference Publication, August 2002. URL http://www.csd.uwo.ca/faculty/
andrews/papers/index.html.

Sergei N. Artemov. On explicit reflection in theorem proving and formal verification. In Proceedings of the
16th International Conference on Automated Deduction, volume 1632 of Lecture Notes in Artificial Intelligence.
Springer-Verlag, July 1999. URL http://web.cs.gc.cuny.edu/~sartemov/.

Jeremy Avigad and Richard Zach. The epsilon calculus. In Edward N. Zalta, editor, The Stanford Encyclopedia of
Philosophy. Stanford University, Summer 2002. URLhttp://plato.stanford.edu/archives/sum2002/
entries/epsilon—-calculus/.

John Backus. Can programming be liberated from the von Neumann style? A functional style and its algebra of
programs. Communications of the ACM, August 1978.

Henk Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, editors,
Handbook of Logic in Computer Science, volume 2. Oxford University Press, 1992. URLhttp://www.cs.ru.
nl/~henk/papers.html.

Weidong Chen, Michael Kifer, and David S. Warren. Hilog: A foundation for higher-order logic programming.
Technical report, State University of New York at Stony Brook. URL ftp://ftp.cs.sunysb.edu/pub/
TechReports/kifer/hilog.pdf.

The Coq development team. The Coq proof assistant reference manual. LogiCal Project, 2004. URLhttp:
//coq.inria.fr/.

H. D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Springer-Verlag, 1984.

William M. Farmer. Stmm: A set theory for mechanized mathematics. Journal of Automated Reasoning, 2001.
URLhttp://imps.mcmaster.ca/doc/stmm.pdf.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally October 18, 2006 / 198 of 203

[11] Paul C. Gilmore. Logicism Renewed: Logical Foundations for Mathematics and Computer Science. Association
for Symbolic Logic & AK Peters, 2005.

[12] Paul C. Gilmore. Soundness & cut-elimination for NaDSyL. Technical Report TR-97-1, University of British
Columbia, February 1997. URL http://www.cs.ubc.ca/cgi-bin/tr/1997/TR-97-01.

[13] Georges Gonthier. A computer-checked proof of the Four Colour Theorem. Microsoft Research, 2004. URL http:
//research.microsoft.com/~gonthier/4colproof.pdf.

[14] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification. Addison-Wesley Profes-
sional, 3”4 edition, 2005. URL http://java.sun.com/docs/books/jls/.

[15] Klaus Grue. Lambda-calculus as a foundation for mathematics. WWW site, August 1997. URLhttp://www.
diku.dk/~grue/.

[16] Klaus Grue. Map theory with classical maps. WWW site, June 2001. URL http://www.diku.dk/~grue/.
[17] William S. Hatcher. Foundations of Mathematics. W. B. Saunders Company, 1968.

[18] Hugo Herbelin, Florent Kirchner, Benjamin Monate, and Julien Narboux. Coq Version 8.0 for the Clueless. Logi-
Cal Project, April 2005. URL http://cog.inria.fr/. Online FAQ.

[19] C.A.R.Hoare and D. C. S. Allison. Incomputability. Computing Surveys, 4(3), September 1972.

[20] Douglas]. Howe. Computational metatheory in Nuprl. In E. Lusk and R. Overbeek, editors, Proceedings of the
Ninth International Conference on Automated Deduction, number 310 in LNCS. Springer-Verlag, 1988. URL
http://www.nuprl.org/documents/Howe/ComputationalMetatheory.html.

[21] Douglas]. Howe. A classical set-theoretic model of polymorphic extensional type theory. URLhttp:
//citeseer.ist.psu.edu/howe97classical.html. 1997.

[22] Samuel Howse. NummSquared 2006a0 Done Formally. Poohbist Technology, October 2006. URL http://
nummist.com/poohbist/. October 18, 2006 pre-release.

[23] Gérard Huet, Gilles Kahn, and Christine Paulin-Mohring. The Coq proof assistant: a tutorial. LogiCal Project,
2004. URL http://cog.inria.fr/.

[24] INRIA. An overview of the Caml language and tools. WWW site, January 2005. URL http://caml.inria.
fr/about/overview.en.html.

[25] A.D.Irvine. Russell’s paradox. In Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Stan-
ford University, Summer 2004. URLhttp://plato.stanford.edu/archives/sum2004/entries/
russell-paradox/.

[26] Roger Bishop Jones. Pure functions. WWW site, December 1998. URL http://www.rbjones.com/rbjpub/
logic/inter013.htm.

[27] David B. Lamkins. Successful Lisp: How to Understand and Use Common Lisp. bookfix.com, 2004. URLhttp:
//psg.com/~dlamkins/Site/sl.html.

[28] Harry R. Lewis and Christos H. Papadimitriou. Elements of the Theory of Computation. Prentice-Hall, 2" edi-
tion, 1998.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally

October 18, 2006 / 199 of 203

(29]

[30]

(31]

(32]

(33]

(34]

[35]

(36]

(37]

(38]

[39]

[40]

(41]

John McCarthy. Recursive functions of symbolic expressions and their computation by machine, partl. Com-
munications of the ACM, April 1960. URL http://www—-formal.stanford.edu/jmc/recursive.html.

Elliott Mendelson. Introduction to Mathematical Logic. Wadsworth & Brooks/Cole Advanced Books & Software,
374 edition, 1987.

C# Language Specification. Microsoft Corporation, 2003. URLhttp://msdn.microsoft.com/vcsharp/
programming/language/. Version 1.2.

The F# Manual. Microsoft Corporation, 2006. URL http://research.microsoft.com/fsharp/manual/
default.aspx.

Praxis. Introduction to SPARK. WWW site, February 2006. URL http://www.praxis—his.com/sparkada/
intro.asp.

Piotr Rudnicki and Andrzej Trybulec. On equivalents of well-foundedness: An experiment in MIZAR. Journal of
Automated Reasoning, 1999.

Jonathan P. Seldin. The logic of Church and Curry. In Dov Gabbay and John Woods, editors, Handbook of the
History of Logic, volume 5. Elsevier. URLhttp://www.cs.uleth.ca/~seldin/publications.shtml.
To appear.

Gaisi Takeuti and Wilson M. Zaring. Introduction to Axiomatic Set Theory. Springer-Verlag, 2"*? edition, 1982.

John Tromp. Binarylambda calculus and combinatory logic. WWW site, March 2006. URL http://
homepages.cwi.nl/~tromp/cl/LC.pdf.

The Unicode Character Code Charts. The Unicode Consortium, October 2005. URL http://www.unicode.
org/charts/. Version 4.1.

The Unicode Standard, Version 4.1.0. The Unicode Consortium, March 2005. URL http://www.unicode.
org/versions/Unicode4.1.0/. defined by: The Unicode Standard, Version 4.0 (Boston, MA, Addison-
Wesley, 2003. ISBN 0-321-18578-1), as amended by Unicode 4.0.1 (http://www.unicode.org/versions/
Unicode4.0.1/) and by Unicode 4.1.0.

John von Neumann. An axiomatization of set theory. In Jean van Heijenoort, editor, From Frege to Gddel. Har-
vard University Press, 1967. Paper originally published 1925.

Edward N. Zalta. Frege’s logic, theorem, and foundations for arithmetic. In Edward N. Zalta, editor, The Stan-
ford Encyclopedia of Philosophy. Stanford University, Summer 2006. URL http://plato.stanford.edu/
entries/frege-logic/.

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally

October 18, 2006 / 200 of 203

Index

abstract program, 79
axiom, 118

Boolean, 24, 28

character primitive, 71

coercion, 47, 49

coercion pair, 48

coercion stability theorem, 50

combination, 74

combination domain extension, 32

comment, 70

computation, 77

computational combination, 75

computational non-normalized constant, 71

computational normalized combination, 62

computational normalized constant, 61

computed, 67

concatenation, 25, 79

constant, 74

constant domain extension, 32

constant large function extension, 56

constant model, 24

Curry, 58

Curry augmented computational combination, 76

Curry augmented uncurry computational combination,
76

Curry computational combination, 76

Curry computational normalized combination, 62

Curry domain axiom, 111

Curry if-then-else axiom, 112

Curry large composition axiom, 111

Curry null predicate axiom, 111

Curry pair predicate axiom, 111

Curry result computational combination, 76

Curry small composition axiom, 111

deep computational, 64

definition, 78

definition list, 78, 79

dependent product, 56, 58

dependent product computational combination, 76

dependent product computational normalized combi-
nation, 62

Dependent product domain axiom, 110

dependent product domain extension, 32

Dependent product if-then-else axiom, 110

Dependent product large composition axiom, 110

Dependent product null predicate axiom, 110

Dependent product pair predicate axiom, 110

Dependent product small composition axiom, 110

dependent sum, 55, 58

dependent sum computational combination, 75

dependent sum computational normalized combina-
tion, 62

Dependent sum domain axiom, 109

dependent sum domain extension, 32

Dependent sum if-then-else axiom, 109

Dependent sum large composition axiom, 109

Dependent sum null predicate axiom, 109

Dependent sum pair predicate axiom, 109

Dependent sum small composition axiom, 109

destination, 24

digit character, 71

domain, 28, 33, 43

Domain domain axiom, 116

domain extension, 32, 33, 37, 44

domain extension family, 32, 55

domain extension irrelevance theorem, 36

Domain idempotent axiom, 116

Domain if-then-else axiom, 116

Domain null predicate axiom, 116

Domain pair predicate axiom, 116

domain small function extension, 31

domain tagged small function extension, 46

duplicitous, 25

element, 25

empty, 24, 25

empty language, 24

Equals reflexive axiom, 114

Equals right-hand-side axiom, 114

Equals substitutive axiom, 114

existential quantification non-computational combina-
tion, 77

extension, 63, 64

extensional equality, 21

extensionality theorem, 54

field, 29

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally

October 18, 2006 / 201 of 203

follows, 119
formal, 22

formal part, 22, 23
from, 24

global context, 80
global name, 77

head, 25

Hilbert, 59

Hilbert non-computational combination, 77

Hilbert non-computational normalized combination, 63
Hilbert transfinite axiom, 115

identifier, 71

identifier continue character, 71

identifier list, 78

identifier start character, 71

identity, 31, 46

Identity large composition axiom, 100

identity large composition axiom, 118

Identity large composition right axiom, 100

identity model, 24

identity small function extension, 31

identity tagged small function extension, 46

if-then-else, 58

if-then-else computational combination, 76

if-then-else computational normalized combination, 63

If-then-else large composition axiom, 112

If-then-else otherwise axiom, 117

Induction axiom, 115

inductive case at non-computational combination, 77

inductive case non-computational combination, 77

inductive domain hypothesis non-computational com-
bination, 77

inductive range hypothesis non-computational combi-
nation, 77

inference, 119

inferred domain extension, 37, 38

informal, 22

informal part, 22, 23

interpretation, 24

intersection, 24

language, 22
large composition, 57
large composition computational combination, 75

large composition computational normalized combina-
tion, 62

Large composition large composition axiom, 107

large function, 74

large function extension, 56

Leaf set domain axiom, 105

Leaf set if-then-else axiom, 105

Leaf set large composition axiom, 105

Leaf set null predicate axiom, 105

Leaf set pair predicate axiom, 105

Leaf set small composition axiom, 105

leaf small function extension, 27

left, 24, 28, 40

length, 25

like this, 23

list, 25, 78, 80

list computational combination, 75

local context, 80, 81

local name, 77

local tuple accessor checker, 78

local tuple accessor descriptor, 78

local tuple accessor list, 78

Logic contrapositive axiom, 113

Logic nested implication axiom, 113

Logic weakening axiom, 113

logical reflection, 21

lowercase letter character, 71

macro expanded, 69

macro expansion, 78

macro pre-expanded, 69

model, 24

module, 79

module name list, 79

Modus ponens inference, 117, 118
modus ponens inference, 119

name, 78, 79

natural number, 23

natural number primitive, 71

negation, 24

non-computational combination, 76
non-computational non-normalized constant, 73
non-computational normalized combination, 63
non-computational normalized constant, 61
non-normalized constant, 74

normal form, 66, 67, 81, 83, 84, 93, 98, 99

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally

October 18, 2006 / 202 of 203

normalized combination, 62

normalized constant, 61

normalized definition, 79

normalized large function, 62

normalized local tuple accessor checker, 80

normalized local tuple accessor descriptor, 80

normalized proposition, 64

normalized result, 66

not universal quantification non-computational combi-
nation, 77

NsGo, 17

Null domain axiom, 100

Null if-then-else axiom, 101

Null large composition axiom, 100

Null null predicate axiom, 100

Null pair predicate axiom, 100

Null predicate otherwise axiom, 115

null rule small function extension, 33

Null set domain axiom, 103

Null set if-then-else axiom, 103

Null set large composition axiom, 103

Null set null predicate axiom, 103

Null set pair predicate axiom, 103

Null set small composition axiom, 103

Null small composition axiom, 100

null small function extension, 27

NummSquared, 17

nuro, 28

Nuro set domain axiom, 104

Nuro set if-then-else axiom, 104

Nuro set large composition axiom, 104

Nuro set null predicate axiom, 104

Nuro set pair predicate axiom, 104

Nuro set small composition axiom, 104

of, 25

on fail, 78, 80

One domain axiom, 102

One if-then-else axiom, 103

One large composition axiom, 102
One null predicate axiom, 102
One pair predicate axiom, 102
One small composition axiom, 102
one small function extension, 27
ordinal pair, 48

pair, 24, 58

pair computational normalized combination, 62
Pair domain axiom, 108

Pair if-then-else axiom, 108

Pair large composition axiom, 107

Pair null predicate axiom, 107

Pair pair predicate axiom, 107

Pair predicate otherwise axiom, 116
Pair small composition axiom, 108

pair small function extension, 27

pair tagged small function extension, 39
pretail, 25

primitive, 71

program, 22

proof, 119

proof unquoted, 121

proposition, 119

proposition extension, 56

quotation, 77
quoted, 69, 121
quoted proof, 121

range, 29, 45

rank, 31, 33, 45

recursion, 59

recursion computational combination, 76

recursion computational normalized combination, 63

recursion on domain computational combination, 76

recursion on range computational combination, 76

Recursion right-hand-side axiom, 113

recursion right-hand-side computational combination,
76

recursion step computational combination, 76

reflection, 20

rest, 25

restrict computational combination, 76

restrict to range computational combination, 76

result, 51, 56, 64

right, 24, 28, 40

right-hand-side, 78, 80

rule small function extension, 28

rule tagged small function extension, 39

search, 25

search first, 25
search first data, 25
search first index, 25

Copyright © 2004-2006 Samuel Howse. All rights reserved.

NummSquared 2006a0 Done Formally

October 18, 2006 / 203 of 203

search length, 25

simple identifier, 71

simple small function extension, 27

simple tagged small function extension, 39

singleton, 24

small, 26

small composition, 57

small composition computational combination, 75

small composition computational normalized combina-
tion, 62

Small composition large composition axiom, 107

small function extension, 27

soundness theorem, 120

source, 24

Specialization inference, 117, 118

specialization inference, 119

specific result, 29, 33, 44

string primitive, 71

sub-language, 24

substitutes, 70

Substitution inference, 118

substitution inference, 119

substitution theorem, 70

tag, 68, 120

tag irrelevance theorem, 40

taggable, 42

tagged, 41, 43, 44

tagged small function extension, 39
tail, 25

to, 24

tree, 28, 41, 65

Tree set domain axiom, 106

Tree set if-then-else axiom, 106

Tree set large composition axiom, 106
Tree set null predicate axiom, 106
Tree set pair predicate axiom, 106
Tree set small composition axiom, 106
true, 56, 64

Truth elimination axiom, 114

Truth introduction axiom, 113

tuple computational combination, 75
tuple locator, 83

unary universal quantification non-computational com-
bination, 77
unchanging, 56, 64

Unicode code point, 23

union, 24

universal quantification non-computational combina-
tion, 77

universally true, 56

unquotation, 77

unquoted, 69

untaggable, 42

untagged, 40

uppercase letter character, 71

valid, 34, 80, 81, 98, 99, 120
valid quoted proof, 121

well-founded, 17, 25

Zero domain axiom, 101

Zero if-then-else axiom, 102

Zero large composition axiom, 101
Zero null predicate axiom, 101
Zero pair predicate axiom, 101
Zero small composition axiom, 101
zero small function extension, 27

Copyright © 2004-2006 Samuel Howse. All rights reserved.

